A tabu search for the permutation flow shop problem with sequence dependent setup times

Author(s):  
Nicolau Santos ◽  
Rui Rebelo ◽  
Joao Pedro Pedroso
Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 210
Author(s):  
Eliana Maria Gonzalez-Neira ◽  
Jairo R. Montoya-Torres ◽  
Jose-Fernando Jimenez

This paper proposes a hybridized simheuristic approach that couples a greedy randomized adaptive search procedure (GRASP), a Monte Carlo simulation, a Pareto archived evolution strategy (PAES), and an analytic hierarchy process (AHP), in order to solve a multicriteria stochastic permutation flow shop problem with stochastic processing times and stochastic sequence-dependent setup times. For the decisional criteria, the proposed approach considers four objective functions, including two quantitative and two qualitative criteria. While the expected value and the standard deviation of the earliness/tardiness of jobs are included in the quantitative criteria to address a robust solution in a just-in-time environment, this approach also includes a qualitative assessment of the product and customer importance in order to appraise a weighted priority for each job. An experimental design was carried out in several study instances of the flow shop problem to test the effects of the processing times and sequence-dependent setup times, obtained through lognormal and uniform probability distributions with three levels of coefficients of variation, settled as 0.3, 0.4, and 0.5. The results show that both probability distributions and coefficients of variation have a significant effect on the four decision criteria selected. In addition, the analytical hierarchical process makes it possible to choose the best sequence exhibited by the Pareto frontier that adjusts more adequately to the decision-makers’ objectives.


2022 ◽  
Vol 12 (2) ◽  
pp. 607
Author(s):  
Fredy Juárez-Pérez ◽  
Marco Antonio Cruz-Chávez ◽  
Rafael Rivera-López ◽  
Erika Yesenia Ávila-Melgar ◽  
Marta Lilia Eraña-Díaz ◽  
...  

In this paper, a hybrid genetic algorithm implemented in a grid environment to solve hard instances of the flexible flow shop scheduling problem with sequence-dependent setup times is introduced. The genetic algorithm takes advantage of the distributed computing power on the grid to apply a hybrid local search to each individual in the population and reach a near optimal solution in a reduced number of generations. Ant colony systems and simulated annealing are used to apply a combination of iterative and cooperative local searches, respectively. This algorithm is implemented using a master–slave scheme, where the master process distributes the population on the slave process and coordinates the communication on the computational grid elements. The experimental results point out that the proposed scheme obtains the upper bound in a broad set of test instances. Also, an efficiency analysis of the proposed algorithm indicates its competitive use of the computational resources of the grid.


Sign in / Sign up

Export Citation Format

Share Document