migrating birds optimization
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 26)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Dini Nur Wasilah

The multi-depot capacitated vehicle routing problem (MDCVRP) is a variation of the vehicle routing problem (VRP) modeled from distribution problems in the industrial world. This problem is a complex optimization problem in the field of operations research in applied mathematics. The MDCVRP is very interesting to discuss and find the best solution method. In this study, the authors apply the modified migrating birds' optimization (MMBO) algorithm, which is a hybrid of the migrating birds' optimization (MMBO) and iterated local search (ILS) algorithms. The purpose of this study is to analyze the results of applying the algorithm in solving MDCVRP. We used 20 MDCVRP data in simulation, grouped into four sizes (25, 50, 75, and 100 points). Based on the results of this research, it is known that the MMBO algorithm can produce the following solutions. First, on the data of 25 points, the experiment reaches the optimal value with small convergent iterations. Second, the best results on the data of 50 points have reached optimal value, but some other results have not been optimal. And, third, for data of 75 and 100 points, there is no optimal solution obtained by the MMBO algorithm. These results conclude that the MMBO algorithm effectively solves the MDCVRP problem with small data, but the bigger data, the more ineffective.Keywords: MDCVRP; VRP; optimization; operation research; applied Mathematics; MMBO. AbstrakMulti-depot capacitated vehicle routing problem (MDCVRP) adalah salah satu variasi dari vehicle routing problem (VRP) yang dimodelkan dari permasalahan distribusi di dunia industri. Permasalahan ini merupakan permasalahan optimasi kompleks dalam bidang riset operasi ilmu matematika terapan. MDCVRP sangat menarik untuk dibahas dan dicari metode penyelesaian terbaik. Dalam penelitian ini, penulis menerapkan algoritma modified migrating birds optimization (MMBO) yang merupakan hybrid algoritma migrating birds optimization (MBO) dan iterated local search (ILS). Tujuan penelitian ini adalah menganalisis hasil penerapan algoritma dalam menyelesaikan MDCVRP. Untuk simulasi, penulis menggunakan 20 data MDCVRP yang dikelompokkan menjadi empat ukuran (25, 50, 75, dan 100 titik). Berdasarkan hasil penelitian yang telah dilakukan, diketahui bahwa algoritma MMBO mampu menghasilkan solusi sebagai berikut. Pertama, Pada data 25 titik, percobaan mencapai nilai optimal dengan iterasi konvergen yang kecil. Kedua, Hasil terbaik pada data 50 titik telah mencapai nilai optimal namun sebagain hasil lainnya belum optimal. Dan ketiga, untuk data 75 dan 100 titik, tidak terdapat solusi optimal yang dihasilkan algoritma MMBO. Dari hasil tersebut dapat disimpulkan bahwa algoritma MMBO efektif untuk menyelesaikan MDCVRP data kecil, namun semakin besar datanya menjadi kurang efektif.Kata kunci: MDCVRP; VRP; optimasi; riset operasi; matematika terapan; MMBO. 


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Gözde Alp ◽  
Ali Fuat Alkaya

The purpose of this paper is twofold. First, it introduces a new hybrid computational intelligence algorithm to the optimization community. This novel hybrid algorithm has hyperheuristic (HH) neighborhood search movements embedded into a recently introduced migrating birds optimization (MBO) algorithm. Therefore, it is called HHMBO. Second, it gives the necessary mathematical model for a shift scheduling problem of a manufacturing company defined by including the fairness perspective, which is typically ignored especially in manufacturing industry. Therefore, we call this complex optimization problem fairness oriented integrated shift scheduling problem (FOSSP). HHMBO is applied on FOSSP and is compared with the well-known simulated annealing, hyperheuristics, and classical MBO algorithms through extended computational experiments on several synthetic datasets. Experiments demonstrate that the new hybrid computational intelligence algorithm is promising especially for large sized instances of the specific problem defined here. HHMBO has a high exploration capability and is a promising technique for all optimization problems. To justify this assertion, we applied HHMBO to the well-known quadratic assignment problem (QAP) instances from the QAPLIB. HHMBO was up to 14.6% better than MBO on converging to the best known solutions for QAP benchmark instances with different densities. We believe that the novel hybrid method and the fairness oriented model presented in this study will give new insights to the decision-makers in the industry as well as to the researchers from several disciplines.


2021 ◽  
pp. 107834
Author(s):  
Guanlong Deng ◽  
Mingming Xu ◽  
Shuning Zhang ◽  
Tianhua Jiang ◽  
Qingtang Su

2020 ◽  
Vol 39 (5) ◽  
pp. 6205-6216
Author(s):  
Ramazan Algin ◽  
Ali Fuat Alkaya ◽  
Mustafa Agaoglu

Feature selection (FS) has become an essential task in overcoming high dimensional and complex machine learning problems. FS is a process used for reducing the size of the dataset by separating or extracting unnecessary and unrelated properties from it. This process improves the performance of classification algorithms and reduces the evaluation time by enabling the use of small sized datasets with useful features during the classification process. FS aims to gain a minimal feature subset in a problem domain while retaining the accuracy of the original data. In this study, four computational intelligence techniques, namely, migrating birds optimization (MBO), simulated annealing (SA), differential evolution (DE) and particle swarm optimization (PSO) are implemented for the FS problem as search algorithms and compared on the 17 well-known datasets taken from UCI machine learning repository where the dimension of the tackled datasets vary from 4 to 500. This is the first time that MBO is applied for solving the FS problem. In order to judge the quality of the subsets generated by the search algorithms, two different subset evaluation methods are implemented in this study. These methods are probabilistic consistency-based FS (PCFS) and correlation-based FS (CFS). Performance comparison of the algorithms is done by using three well-known classifiers; k-nearest neighbor, naive bayes and decision tree (C4.5). As a benchmark, the accuracy values found by classifiers using the datasets with all features are used. Results of the experiments show that our MBO-based filter approach outperforms the other three approaches in terms of accuracy values. In the experiments, it is also observed that as a subset evaluator CFS outperforms PCFS and as a classifier C4.5 gets better results when compared to k-nearest neighbor and naive bayes.


2020 ◽  
Vol 12 (4) ◽  
pp. 63-75
Author(s):  
Zhifeng Zhang ◽  
Yusheng Sun ◽  
Yadong Cui ◽  
Haodong Zhu

Production scheduling problems have historically emphasized cycle time without involving the environmental factors. In the study, a low-carbon scheduling problem in a flexible job shop is considered to minimize the energy consumption, which mainly consists of two parts: the useful part and the wasted part. First, a mathematical model is built based on the features of the workshop. Second, a modified migrating bird's optimization (MMBO) is developed to obtain the optimal solution. In the MMBO, a population initialization scheme is designed to enhance the solution quality and convergence speed. Five types of neighborhood structures are introduced to create neighborhood solutions. Furthermore, a local search method and a reset mechanism are developed to improve the computational results. Finally, experimental results validate that the MMBO is effective and feasible.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1661
Author(s):  
Dayong Han ◽  
Qiuhua Tang ◽  
Zikai Zhang ◽  
Zixiang Li

Steelmaking and the continuous-casting (SCC) scheduling problem is a realistic hybrid flow shop scheduling problem with continuous-casting production at the last stage. This study considers the SCC scheduling problem with diverse products, which is a vital and difficult problem in steel plants. To tackle this problem, this study first presents the mixed-integer linear programming (MILP) model to minimize the objective of makespan. Then, an improved migrating birds optimization algorithm (IMBO) is proposed to tackle this considered NP-hard problem. In the proposed IMBO, several improvements are employed to achieve the proper balance between exploration and exploitation. Specifically, a two-level decoding procedure is designed to achieve feasible solutions; the simulated annealing-based acceptance criterion is employed to ensure the diversity of the population and help the algorithm to escape from being trapped in local optima; a competitive mechanism is developed to emphasize exploitation capacity by searching around the most promising solution space. The computational experiments demonstrate that the proposed IMBO obtains competing performance and it outperforms seven other implemented algorithms in the comparative study.


Sign in / Sign up

Export Citation Format

Share Document