Laser ultrasonic guided wave methods for defect detection and materials characterisation

Author(s):  
B. Boro Djordjevic
Author(s):  
Zhaoyun Ma ◽  
Lingyu Yu

Abstract Noncontact and remote NDE systems and methods are highly desired in a broad range of engineering applications such as material property characterization. This paper aims to develop such a noncontact/remote NDE system based on laser ultrasonic guided waves and establish its fundamental capability for material thickness evaluation. The noncontact system employs pulsed laser (PL) for guided wave actuation and scanning laser Doppler vibrometer (SLDV) for guided wave wavefield sensing. A cylindrical planoconvex lens is adopted to focus the pulsed laser beam to a line source in order to excite broad band signals in the target plate. Aluminum plates with different thicknesses are evaluated through SLDV line scans and 2D time-space wavefields are acquired. Frequency-wavenumber (f-k) spectra are obtained through 2D Fourier transform, and the A0 dispersion curve for each plate is extracted. Through Comparing the extracted A0 curve with the theoretical A0 dispersion curves, the thicknesses of the tested plates are identified. Reflective tape effect on the plates are also studied: the reflective tape attached for SLDV enhancement affects the guided waves in the target plate significantly when the plate is relatively thin.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3992 ◽  
Author(s):  
Sang-Hyeon Kang ◽  
Dae-Hyun Han ◽  
Lae-Hyong Kang

We studied the detection and visualization of defects in a test object using a laser ultrasonic guided wave. The scan area is irradiated by a laser generated from a Nd:YAG 532 nm Q-switched laser generator through a galvanometer scanner. The laser irradiation causes the surface temperature to suddenly rise and then become temporarily adiabatic. The locally heated region reaches thermal equilibrium with the surroundings. In other words, heat energy propagates inside the object in the form of elastic energy through adiabatic expansion. This thermoelastic wave is typically acquired by a piezoelectric sensor, which is sensitive in the ultrasonic domain. A single piezoelectric sensor has limited coverage in the scan area, while multi-channel piezoelectric sensors require many sensors, large-scale wiring, and many channeling devices for use and installation. In addition, the sensors may not acquire signals due to their installed locations, and the efficiency may be reduced because of the overlap between the sensing areas of multiple sensors. For these reasons, the concept of a piezoelectric line sensor is adopted in this study for the first time. To verify the feasibility of the line sensor, I- and L-shaped sensors were attached to a steel structure, and the ultrasound signal from laser excitation was obtained. If the steel structure has defects on the back, the ultrasonic propagation image will be distorted in the defect area. Thus, we can detect the defects easily from the visualization image. Three defects were simulated for the test. The results show that the piezoelectric line sensor can detect defects more precisely and accurately compared to a single piezoelectric sensor.


2016 ◽  
Author(s):  
Stefano Mariani ◽  
Thompson V. Nguyen ◽  
Simone Sternini ◽  
Francesco Lanza di Scalea ◽  
Mahmood Fateh ◽  
...  

Author(s):  
Jing Wu ◽  
Fei Yang ◽  
Lin Jing ◽  
Zhongming Liu ◽  
Yizhou Lin ◽  
...  

Author(s):  
Molin Zhao ◽  
Haisheng Wang ◽  
Bin Xue ◽  
Yonggang Yue ◽  
Pengfei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document