Developing in-vehicular noise robust children ASR system using Tandem-NN-based acoustic modelling

2020 ◽  
Vol 15 (3/4) ◽  
pp. 296
Author(s):  
Puneet Bawa ◽  
Shashi Bala ◽  
Virender Kadyan ◽  
Mohit Mittal
2020 ◽  
Vol 15 (3/4) ◽  
pp. 296
Author(s):  
Virender Kadyan ◽  
Shashi Bala ◽  
Puneet Bawa ◽  
Mohit Mittal

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Santiago-Omar Caballero-Morales

An approach for the recognition of emotions in speech is presented. The target language is Mexican Spanish, and for this purpose a speech database was created. The approach consists in the phoneme acoustic modelling of emotion-specific vowels. For this, a standard phoneme-based Automatic Speech Recognition (ASR) system was built with Hidden Markov Models (HMMs), where different phoneme HMMs were built for the consonants and emotion-specific vowels associated with four emotional states (anger, happiness, neutral, sadness). Then, estimation of the emotional state from a spoken sentence is performed by counting the number of emotion-specific vowels found in the ASR’s output for the sentence. With this approach, accuracy of 87–100% was achieved for the recognition of emotional state of Mexican Spanish speech.


2018 ◽  
Vol 29 (1) ◽  
pp. 327-344 ◽  
Author(s):  
Mohit Dua ◽  
Rajesh Kumar Aggarwal ◽  
Mantosh Biswas

Abstract The classical approach to build an automatic speech recognition (ASR) system uses different feature extraction methods at the front end and various parameter classification techniques at the back end. The Mel-frequency cepstral coefficients (MFCC) and perceptual linear prediction (PLP) techniques are the conventional approaches used for many years for feature extraction, and the hidden Markov model (HMM) has been the most obvious selection for feature classification. However, the performance of MFCC-HMM and PLP-HMM-based ASR system degrades in real-time environments. The proposed work discusses the implementation of discriminatively trained Hindi ASR system using noise robust integrated features and refined HMM model. It sequentially combines MFCC with PLP and MFCC with gammatone-frequency cepstral coefficient (GFCC) to obtain MF-PLP and MF-GFCC integrated feature vectors, respectively. The HMM parameters are refined using genetic algorithm (GA) and particle swarm optimization (PSO). Discriminative training of acoustic model using maximum mutual information (MMI) and minimum phone error (MPE) is preformed to enhance the accuracy of the proposed system. The results show that discriminative training using MPE with MF-GFCC integrated feature vector and PSO-HMM parameter refinement gives significantly better results than the other implemented techniques.


Author(s):  
Mohit Dua ◽  
Pawandeep Singh Sethi ◽  
Vinam Agrawal ◽  
Raghav Chawla

Introduction: An Automatic Speech Recognition (ASR) system enables to recognize the speech utterances and thus can be used to convert speech into text for various purposes. These systems are deployed in different environments such as clean or noisy and are used by all ages or types of people. These also present some of the major difficulties faced in the development of an ASR system. Thus, an ASR system need to be efficient, while also being accurate and robust. Our main goal is to minimize the error rate during training as well as testing phases, while implementing an ASR system. Performance of ASR depends upon different combinations of feature extraction techniques and back-end techniques. In this paper, using a continuous speech recognition system, the performance comparison of different combinations of feature extraction techniques and various types of back-end techniques has been presented Methods: Hidden Markov Models (HMMs), Subspace Gaussian Mixture Models (SGMMs) and Deep Neural Networks (DNNs) with DNN-HMM architecture, namely Karel's, Dan's and Hybrid DNN-SGMM architecture are used at the back-end of the implemented system. Mel frequency Cepstral Coefficient (MFCC), Perceptual Linear Prediction (PLP), and Gammatone Frequency Cepstral coefficients (GFCC) are used as feature extraction techniques at the front-end of the proposed system. Kaldi toolkit has been used for the implementation of the proposed work. The system is trained on the Texas Instruments-Massachusetts Institute of Technology (TIMIT) speech corpus for English language Results: The experimental results show that MFCC outperforms GFCC and PLP in noiseless conditions, while PLP tends to outperform MFCC and GFCC in noisy conditions. Furthermore, the hybrid of Dan's DNN implementation along with SGMM performs the best for the back-end acoustic modeling. The proposed architecture with PLP feature extraction technique in the front end and hybrid of Dan's DNN implementation along with SGMM at the back end outperforms the other combinations in a noisy environment. Conclusion: Automatic Speech recognition has numerous applications in our lives like Home automation, Personal assistant, Robotics etc. It is highly desirable to build an ASR system with good performance. The performance Automatic Speech Recognition is affected by various factors which include vocabulary size, whether system is speaker dependent or independent, whether speech is isolated, discontinuous or continuous, adverse conditions like noise. The paper presented an ensemble architecture that uses PLP for feature extraction at the front end and a hybrid of SGMM + Dan's DNN in the backend to build a noise robust ASR system Discussion: The presented work in this paper discusses the performance comparison of continuous ASR systems developed using different combinations of front-end feature extraction (MFCC, PLP, and GFCC) and back-end acoustic modeling (mono-phone, tri-phone, SGMM, DNN and hybrid DNN-SGMM) techniques. Each type of front-end technique is tested in combination with each type of back-end technique. Finally, it compares the results of the combinations thus formed, to find out the best performing combination in noisy and clean conditions


2018 ◽  
Vol 10 (6) ◽  
pp. 2301-2314 ◽  
Author(s):  
Mohit Dua ◽  
Rajesh Kumar Aggarwal ◽  
Mantosh Biswas

2010 ◽  
Vol E93-C (11) ◽  
pp. 1583-1589
Author(s):  
Fumirou MATSUKI ◽  
Kazuyuki HASHIMOTO ◽  
Keiichi SANO ◽  
Fu-Yuan HSUEH ◽  
Ramesh KAKKAD ◽  
...  

2018 ◽  
Author(s):  
Nadee Seneviratne ◽  
Ganesh Sivaraman ◽  
Vikramjit Mitra ◽  
Carol Espy-Wilson
Keyword(s):  

2017 ◽  
Author(s):  
Dung T. Tran ◽  
Marc Delcroix ◽  
Atsunori Ogawa ◽  
Tomohiro Nakatani

Sign in / Sign up

Export Citation Format

Share Document