Chapter 4. Enumerative Combinatorics

Order ◽  
2021 ◽  
Author(s):  
Antonio Bernini ◽  
Matteo Cervetti ◽  
Luca Ferrari ◽  
Einar Steingrímsson

AbstractWe initiate the study of the enumerative combinatorics of the intervals in the Dyck pattern poset. More specifically, we find some closed formulas to express the size of some specific intervals, as well as the number of their covering relations. In most of the cases, we are also able to refine our formulas by rank. We also provide the first results on the Möbius function of the Dyck pattern poset, giving for instance a closed expression for the Möbius function of initial intervals whose maximum is a Dyck path having exactly two peaks.


2021 ◽  
Author(s):  
Ömer Eğecioğlu ◽  
Adriano M. Garsia

2009 ◽  
Vol 46 (04) ◽  
pp. 1038-1051 ◽  
Author(s):  
Rudolf Grübel ◽  
Paweł Hitczenko

Let (X i ) i∈ℕ be a sequence of independent and identically distributed random variables with values in the set ℕ0 of nonnegative integers. Motivated by applications in enumerative combinatorics and analysis of algorithms we investigate the number of gaps and the length of the longest gap in the set {X 1,…,X n } of the first n values. We obtain necessary and sufficient conditions in terms of the tail sequence (q k ) k∈ℕ0 , q k =P(X 1≥ k), for the gaps to vanish asymptotically as n→∞: these are ∑ k=0 ∞ q k+1/q k <∞ and limk→∞ q k+1/q k =0 for convergence almost surely and convergence in probability, respectively. We further show that the length of the longest gap tends to ∞ in probability if q k+1/q k → 1. For the family of geometric distributions, which can be regarded as the borderline case between the light-tailed and the heavy-tailed situations and which is also of particular interest in applications, we study the distribution of the length of the longest gap, using a construction based on the Sukhatme–Rényi representation of exponential order statistics to resolve the asymptotic distributional periodicities.


Sign in / Sign up

Export Citation Format

Share Document