Chapter 2 The Basic Representation Theory of Compact Groups

2013 ◽  
Vol 56 (1) ◽  
pp. 218-224 ◽  
Author(s):  
Dilian Yang

AbstractBy exploring the relations among functional equations, harmonic analysis and representation theory, we give a unified and very accessible approach to solve three important functional equations- the d'Alembert equation, the Wilson equation, and the d'Alembert long equation-on compact groups.


Author(s):  
Tullio Ceccherini-Silberstein ◽  
Fabio Scarabotti ◽  
Filippo Tolli

2006 ◽  
Vol 15 (10) ◽  
pp. 1245-1277 ◽  
Author(s):  
STEPHEN F. SAWIN

We develop the basic representation theory of all quantum groups at all roots of unity (that is, for q any root of unity, where q is defined as in [18]), including Harish–Chandra's theorem, which allows us to show that an appropriate quotient of a subcategory gives a semisimple ribbon category. This work generalizes previous work on the foundations of representation theory of quantum groups at roots of unity which applied only to quantizations of the simplest groups, or to certain fractional levels, or only to the projective form of the group. The second half of this paper applies the representation theory to give a sequence of results crucial to applications in topology. In particular, for each compact, simple, simply-connected Lie group we show that at each integer level the quotient category is in fact modular (thus leading to a Topological Quantum Field Theory), we determine when at fractional levels the corresponding category is modular, and we give a quantum version of the Racah formula for the decomposition of the tensor product.


Sign in / Sign up

Export Citation Format

Share Document