quantum version
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 46)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Yushi Mura ◽  
Hiroki Wada

Abstract Quantum computers that process information by harnessing the remarkable power of quantum mechanics are increasingly being put to practical use. In the future, their impact will be felt in numerous fields, including in online casino games. This is one of the reasons why quantum gambling theory has garnered considerable attention. Studies have shown that the quantum gambling theory often yields nontrivial consequences that classical theory cannot interpret. We formulated blackjack game, which is one of the most famous card games, as a quantum game and found possible quantum entanglement between strategies. We also devised a quantum circuit reproducing classical blackjack. This circuit can be realized in the near future when quantum computers are commonplace. Furthermore, we showed that the player’s expectation increases compared to the classical game using quantum basic strategy, which is a quantum version of the popular basic strategy of blackjack.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Shibendu Gupta Choudhury ◽  
Ananda Dasgupta ◽  
Narayan Banerjee

AbstractA recent attempt to arrive at a quantum version of Raychaudhuri’s equation is looked at critically. It is shown that the method, and even the idea, has some inherent problems. The issues are pointed out here. We have also shown that it is possible to salvage the method in some limited domain of applicability. Although no generality can be claimed, a quantum version of the equation should be useful in the context of ascertaining the existence of a singularity in the quantum regime. The equation presented in the present work holds for arbitrary $$n+1$$ n + 1 dimensions. An important feature of the Hamiltonian in the operator form is that it admits a self-adjoint extension quite generally. Thus, the conservation of probability is ensured.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1288
Author(s):  
Sean Devine

According to Landauer’s principle, at least kBln2T Joules are needed to erase a bit that stores information in a thermodynamic system at temperature T. However, the arguments for the principle rely on a regime where the equipartition principle holds. This paper, by exploring a simple model of a thermodynamic system using algorithmic information theory, shows the energy cost of transferring a bit, or restoring the original state, is kBln2T Joules for a reversible system. The principle is a direct consequence of the statistics required to allocate energy between stored energy states and thermal states, and applies outside the validity of the equipartition principle. As the thermodynamic entropy of a system coincides with the algorithmic entropy of a typical state specifying the momentum degrees of freedom, it can quantify the thermodynamic requirements in terms of bit flows to maintain a system distant from the equilibrium set of states. The approach offers a simple conceptual understanding of entropy, while avoiding problems with the statistical mechanic’s approach to the second law of thermodynamics. Furthermore, the classical articulation of the principle can be used to derive the low temperature heat capacities, and is consistent with the quantum version of the principle.


2021 ◽  
Author(s):  
Ichio Kikuchi ◽  
Akihito Kikuchi

In this essay, we examine the feasibility of quantum computation of Groebner basis which is a fundamental tool of algebraic geometry. The classical method for computing Groebner basis is based on Buchberger's algorithm, and our question is how to adopt quantum algorithm there. A Quantum algorithm for finding the maximum is usable for detecting head terms of polynomials, which are required for the computation of S-polynomials. The reduction of S-polynomials with respect to a Groebner basis could be done by the quantum version of Gauss-Jordan elimination of echelon which represents polynomials. However, the frequent occurrence of zero-reductions of polynomials is an obstacle to the effective application of quantum algorithms. This is because zero-reductions of polynomials occur in non-full-rank echelons, for which quantum linear systems algorithms (through the inversion of matrices) are inadequate, as ever-known quantum linear solvers (such as Harrow-Hassidim-Lloyd) require the clandestine computations of the inverses of eigenvalues. Hence, for the quantum computation of the Groebner basis, the schemes to suppress the zero-reductions are necessary. To this end, the F5 algorithm or its variant (F5C) would be the most promising, as these algorithms have countermeasures against the occurrence of zero-reductions and can construct full-rank echelons whenever the inputs are regular sequences. Between these two algorithms, the F5C is the better match for algorithms involving the inversion of matrices.


2021 ◽  
Vol 21 (13&14) ◽  
pp. 1111-1134
Author(s):  
Tomoyuki Morimae

Randomized encoding is a powerful cryptographic primitive with various applications such as secure multiparty computation, verifiable computation, parallel cryptography, and complexity lower bounds. Intuitively, randomized encoding $\hat{f}$ of a function $f$ is another function such that $f(x)$ can be recovered from $\hat{f}(x)$, and nothing except for $f(x)$ is leaked from $\hat{f}(x)$. Its quantum version, quantum randomized encoding, has been introduced recently [Brakerski and Yuen, arXiv:2006.01085]. Intuitively, quantum randomized encoding $\hat{F}$ of a quantum operation $F$ is another quantum operation such that, for any quantum state $\rho$, $F(\rho)$ can be recovered from $\hat{F}(\rho)$, and nothing except for $F(\rho)$ is leaked from $\hat{F}(\rho)$. In this paper, we show three results. First, we show that if quantum randomized encoding of BB84 state generations is possible with an encoding operation $E$, then a two-round verification of quantum computing is possible with a classical verifier who can additionally do the operation $E$. One of the most important goals in the field of the verification of quantum computing is to construct a verification protocol with a verifier as classical as possible. This result therefore demonstrates a potential application of quantum randomized encoding to the verification of quantum computing: if we can find a good quantum randomized encoding (in terms of the encoding complexity), then we can construct a good verification protocol of quantum computing. Our second result is, however, to show that too good quantum randomized encoding is impossible: if quantum randomized encoding for the generation of even simple states (such as BB84 states) is possible with a classical encoding operation, then the no-cloning is violated. Finally, we consider a natural modification of blind quantum computing protocols in such a way that the server gets the output like quantum randomized encoding. We show that the modified protocol is not secure.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 315
Author(s):  
Janos Polonyi

Classical physics is approached from quantum mechanics in the macroscopic limit. The technical device to achieve this goal is the quantum version of the central limit theorem, derived for an observable at a given time and for the time-dependent expectation value of the coordinate. The emergence of the classical trajectory can be followed for the average of an observable over a large set of independent microscopical systems, and the deterministic classical laws can be recovered in all practical purposes, owing to the largeness of Avogadro’s number. This result refers to the observed system without considering the measuring apparatus. The emergence of a classical trajectory is followed qualitatively in Wilson’s cloud chamber.


2021 ◽  
Author(s):  
Ming-Cheng Chen ◽  
Chao-Yang Lu ◽  
Jian-Wei Pan

Generalized Uncertainty Principle (GUP), which manifests a minimal Planck length in quantum spacetime, is central in various quantum gravity theories and has been widely used to describe the Planck-scale phenomenon. Here, we propose a thought experiment based on GUP – as a quantum version of Galileo's falling bodies experiment – to show that the experimental results cannot be consistently described in quantum mechanics. This paradox arises from the interaction of two quantum systems in an interferometer, a photon and a mirror, with different effective Planck constants. Our thought experiment rules out the widely used GUP, and establishes a Quantum Coupling Principle that two physical systems of different effective Planck constants cannot be consistently coupled in quantum mechanics. Our results point new directions to quantum gravity.


2021 ◽  
Vol 21 (9-10) ◽  
pp. 781-799
Author(s):  
Ion Nechita ◽  
Jordi Pillet

(pp781-799) doi: https://doi.org/ Abstracts: We introduce SudoQ, a quantum version of the classical game Sudoku. Allowing the entries of the grid to be (non-commutative) projections instead of integers, the solution set of SudoQ puzzles can be much larger than in the classical (commutative) setting. We introduce and analyze a randomized algorithm for computing solutions of SudoQ puzzles. Finally, we state two important conjectures relating the quantum and the classical solutions of SudoQ puzzles, corroborated by analytical and numerical evidence.


Sign in / Sign up

Export Citation Format

Share Document