connected lie group
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
RIDDHI SHAH ◽  
ALOK KUMAR YADAV

Abstract For a locally compact metrisable group G, we study the action of ${\rm Aut}(G)$ on ${\rm Sub}_G$ , the set of closed subgroups of G endowed with the Chabauty topology. Given an automorphism T of G, we relate the distality of the T-action on ${\rm Sub}_G$ with that of the T-action on G under a certain condition. If G is a connected Lie group, we characterise the distality of the T-action on ${\rm Sub}_G$ in terms of compactness of the closed subgroup generated by T in ${\rm Aut}(G)$ under certain conditions on the center of G or on T as follows: G has no compact central subgroup of positive dimension or T is unipotent or T is contained in the connected component of the identity in ${\rm Aut}(G)$ . Moreover, we also show that a connected Lie group G acts distally on ${\rm Sub}_G$ if and only if G is either compact or it is isomorphic to a direct product of a compact group and a vector group. All the results on the Lie groups mentioned above hold for the action on ${\rm Sub}^a_G$ , a subset of ${\rm Sub}_G$ consisting of closed abelian subgroups of G.


2021 ◽  
pp. 1-9
Author(s):  
LEONARDO BILIOTTI ◽  
OLUWAGBENGA JOSHUA WINDARE

Abstract We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra $\mathfrak {u}$ extends holomorphically to an action of the complexified group $U^{\mathbb {C}}$ and that the U-action on Z is Hamiltonian. If $G\subset U^{\mathbb {C}}$ is compatible, there exists a gradient map $\mu _{\mathfrak p}:X \longrightarrow \mathfrak p$ where $\mathfrak g=\mathfrak k \oplus \mathfrak p$ is a Cartan decomposition of $\mathfrak g$ . In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map $\mu _{\mathfrak p}$ .


Author(s):  
Leonardo Biliotti

AbstractLet $$(Z,\omega )$$ ( Z , ω ) be a connected Kähler manifold with an holomorphic action of the complex reductive Lie group $$U^\mathbb {C}$$ U C , where U is a compact connected Lie group acting in a hamiltonian fashion. Let G be a closed compatible Lie group of $$U^\mathbb {C}$$ U C and let M be a G-invariant connected submanifold of Z. Let $$x\in M$$ x ∈ M . If G is a real form of $$U^\mathbb {C}$$ U C , we investigate conditions such that $$G\cdot x$$ G · x compact implies $$U^\mathbb {C}\cdot x$$ U C · x is compact as well. The vice-versa is also investigated. We also characterize G-invariant real submanifolds such that the norm-square of the gradient map is constant. As an application, we prove a splitting result for real connected submanifolds of $$(Z,\omega )$$ ( Z , ω ) generalizing a result proved in Gori and Podestà (Ann Global Anal Geom 26: 315–318, 2004), see also Bedulli and Gori (Results Math 47: 194–198, 2005), Biliotti (Bull Belg Math Soc Simon Stevin 16: 107–116 2009).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Viviana del Barco ◽  
Andrei Moroianu

Abstract We study left-invariant conformal Killing 2- or 3-forms on simply connected 2-step nilpotent Riemannian Lie groups. We show that if the center of the group is of dimension greater than or equal to 4, then every such form is automatically coclosed (i.e. it is a Killing form). In addition, we prove that the only Riemannian 2-step nilpotent Lie groups with center of dimension at most 3 and admitting left-invariant non-coclosed conformal Killing 2- and 3-forms are the following: The Heisenberg Lie groups and their trivial 1-dimensional extensions, endowed with any left-invariant metric, and the simply connected Lie group corresponding to the free 2-step nilpotent Lie algebra on 3 generators, with a particular 1-parameter family of metrics. The explicit description of the space of conformal Killing 2- and 3-forms is provided in each case.


Author(s):  
Severin Bunk ◽  
Lukas Müller ◽  
Richard J. Szabo

AbstractWe study bundle gerbes on manifolds M that carry an action of a connected Lie group G. We show that these data give rise to a smooth 2-group extension of G by the smooth 2-group of hermitean line bundles on M. This 2-group extension classifies equivariant structures on the bundle gerbe, and its non-triviality poses an obstruction to the existence of equivariant structures. We present a new global approach to the parallel transport of a bundle gerbe with connection, and use it to give an alternative construction of this smooth 2-group extension in terms of a homotopy-coherent version of the associated bundle construction. We apply our results to give new descriptions of nonassociative magnetic translations in quantum mechanics and the Faddeev–Mickelsson–Shatashvili anomaly in quantum field theory. We also propose a definition of smooth string 2-group models within our geometric framework. Starting from a basic gerbe on a compact simply-connected Lie group G, we prove that the smooth 2-group extensions of G arising from our construction provide new models for the string group of G.


2021 ◽  
Vol 33 (3) ◽  
pp. 593-600
Author(s):  
Roberto Ferreiro Pérez

Abstract If ω is a closed G-invariant 2-form and μ is a moment map, we obtain necessary and sufficient conditions for equivariant prequantizability that can be computed in terms of the moment map μ. Our main result is that G-equivariant prequantizability is related to the fact that the moment map μ should be quantized for certain vectors on the Lie algebra of G. We also compute the obstructions to lift the action of G to a prequantization bundle of ω. Our results are valid for any compact and connected Lie group G.


2020 ◽  
pp. 117-120
Author(s):  
E.D. Rodionov ◽  
O.P. Khromova

One of the important problems of Riemannian geometry is the problem of establishing connections between curvature and the topology of a Riemannian manifold, and, in particular, the influence of the sign of sectional curvature on the topological structure of a Riemannian manifold. Of particular importance in these studies is the question of the influence of d-pinching of Riemannian metrics of positive sectional curvature on the geometric and topological structure of the Riemannian manifold. This question is most studied for the homogeneous Riemannian case. In this direction, the classification of homogeneous Riemannian manifolds of positive sectional curvature, obtained by M. Berger, N. Wallach, L. Bergeri, as well as a number of results on d- pinching of homogeneous Riemannian metrics of positive sectional curvature, is well known. In this paper, we investigate Riemannian manifolds with metric connection being a connection with vectorial torsion. The Levi-Civita connection falls into this class of connections. Although the curvature tensor of these connections does not possess the symmetries of the Levi-Civita connection curvature tensor, it seems possible to determine sectional curvature. This paper studies the d-pinch function of the sectional curvature of a compact connected Lie group G with a biinvariant Riemannian metric and a connection with vectorial torsion. It is proved that it takes the values d(||V ||)∈(0,1].


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 953
Author(s):  
Víctor Ayala ◽  
Heriberto Román-Flores ◽  
María Torreblanca Todco ◽  
Erika Zapana

The goal of this article is to compare the observability properties of the class of linear control systems in two different manifolds: on the Euclidean space R n and, in a more general setup, on a connected Lie group G. For that, we establish well-known results. The symmetries involved in this theory allow characterizing the observability property on Euclidean spaces and the local observability property on Lie groups.


Author(s):  
Loring W. Tu

This chapter describes basic forms. On a principal bundle π‎: P → M, the differential forms on P that are pullbacks of forms ω‎ on the base M are called basic forms. The chapter characterizes basic forms in terms of the Lie derivative and interior multiplication. It shows that basic forms on a principal bundle are invariant and horizontal. To understand basic forms better, the chapter considers a simple example. The plane ℝ2 may be viewed as the total space of a principal ℝ-bundle. A connected Lie group is generated by any neighborhood of the identity. This example shows the necessity of the connectedness hypothesis.


Author(s):  
Loring W. Tu

This chapter offers an outline of a proof of the equivariant de Rham theorem. In 1950, Henri Cartan proved that the cohomology of the base of a principal G-bundle for a connected Lie group G can be computed from the Weil model of the total space. From Cartan's theorem it is not too difficult to deduce the equivariant de Rham theorem for a free action. Guillemin and Sternberg presents an algebraic proof of the equivariant de Rham theorem, although some details appear to be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of a different approach using the Mayer–Vietoris argument. A limitation of the Mayer–Vietoris argument is that it applies only to manifolds with a finite good cover. The chapter provides a proof of the general case with no restrictions on the manifold and with all the details.


Sign in / Sign up

Export Citation Format

Share Document