4 Effect of the Hardy–Leray potential in the solvability of semilinear elliptic equations

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hyungjin Huh

We discuss the nonexistence of nontrivial solutions for the Chern-Simons-Higgs and Chern-Simons-Schrödinger equations. The Derrick-Pohozaev type identities are derived to prove it.


1999 ◽  
Vol 22 (4) ◽  
pp. 869-883 ◽  
Author(s):  
Alan V. Lair ◽  
Aihua W. Wood

We show that large positive solutions exist for the equation(P±):Δu±|∇u|q=p(x)uγinΩ⫅RN(N≥3)for appropriate choices ofγ>1,q>0in which the domainΩis either bounded or equal toRN. The nonnegative functionpis continuous and may vanish on large parts ofΩ. IfΩ=RN, thenpmust satisfy a decay condition as|x|→∞. For(P+), the decay condition is simply∫0∞tϕ(t)dt<∞, whereϕ(t)=max|x|=tp(x). For(P−), we require thatt2+βϕ(t)be bounded above for some positiveβ. Furthermore, we show that the given conditions onγandpare nearly optimal for equation(P+)in that no large solutions exist if eitherγ≤1or the functionphas compact support inΩ.


Sign in / Sign up

Export Citation Format

Share Document