Harmonic sections of vector bundles with spherically symmetric metrics

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed T. K. Abbassi ◽  
Ibrahim Lakrini

Abstract We equip an arbitrary vector bundle over a Riemannian manifold, endowed with a fiber metric and a compatible connection, with a spherically symmetric metric (cf. [4]), and westudy harmonicity of its sections firstly as smooth maps and then as critical points of the energy functional with variations through smooth sections.We also characterize vertically harmonic sections. Finally, we give some examples of special vector bundles, recovering in some situations some classical harmonicity results.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed Tahar Kadaoui Abbassi ◽  
Ibrahim Lakrini

Abstract In this paper, we address the completeness problem of certain classes of Riemannian metrics on vector bundles. We first establish a general result on the completeness of the total space of a vector bundle when the projection is a horizontally conformal submersion with a bound condition on the dilation function, and in particular when it is a Riemannian submersion. This allows us to give completeness results for spherically symmetric metrics on vector bundle manifolds and eventually for the class of Cheeger-Gromoll and generalized Cheeger-Gromoll metrics on vector bundle manifolds. Moreover, we study the completeness of a subclass of g-natural metrics on tangent bundles and we extend the results to the case of unit tangent sphere bundles. Our proofs are mainly based on techniques of metric topology and on the Hopf-Rinow theorem.


1953 ◽  
Vol 9 (1) ◽  
pp. 13-16 ◽  
Author(s):  
Paul Kustaanheimo

SummaryIt is shown that every spherically symmetric metric can be transformed into the isotropic form. As illustration an example is given.


1999 ◽  
Vol 1999 (511) ◽  
pp. 73-86 ◽  
Author(s):  
Peter Petersen ◽  
Chadwick Sprouse

Abstract We investigate some very general pinching results for eigensections with small eigenvalue of a Riemannian vector bundle. In particular, this gives pinching results for the eigenvalues of 1-forms on a compact Riemannian manifold, along with other applications.


2009 ◽  
Vol 146 (2) ◽  
pp. 435-459 ◽  
Author(s):  
J. C. GONZÁLEZ–DÁVILA ◽  
F. MARTÍN CABRERA

AbstractFor closed and connected subgroups G of SO(n), we study the energy functional on the space of G-structures of a (compact) Riemannian manifold (M, 〈⋅, ⋅〉), where G-structures are considered as sections of the quotient bundle (M)/G. We deduce the corresponding first and second variation formulae and the characterising conditions for critical points by means of tools closely related to the study of G-structures. In this direction, we show the rôle in the energy functional played by the intrinsic torsion of the G-structure. Moreover, we analyse the particular case G=U(n) for 2n-dimensional manifolds. This leads to the study of harmonic almost Hermitian manifolds and harmonic maps from M into (M)/U(n).


2021 ◽  
Vol 71 (1) ◽  
pp. 199-210
Author(s):  
Aniruddha C. Naolekar

Abstract Let 𝓔 k denote the set of diffeomorphism classes of closed connected smooth k-manifolds X with the property that for any oriented vector bundle α over X, the Euler class e(α) = 0. We show that if X ∈ 𝓔2n+1 is orientable, then X is a rational homology sphere and π 1(X) is perfect. We also show that 𝓔8 = ∅ and derive additional cohomlogical restrictions on orientable manifolds in 𝓔 k .


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


Sign in / Sign up

Export Citation Format

Share Document