scholarly journals Multiple Solutions for the p(x)− Laplace Operator with Critical Growth

2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Analia Silva

AbstractThe aim of this paper is to extend previous results regarding the multiplicity of solutions for quasilinear elliptic problems with critical growth to the variable exponent case. We prove, in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear elliptic equation −Δ

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lifang Fu ◽  
Mingzheng Sun

AbstractWe study the quasilinear elliptic problem which is resonant at zero. By using Morse theory, we obtain five nontrivial solutions for the equation with coercive nonlinearities.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Marino Badiale ◽  
Michela Guida ◽  
Sergio Rolando

<p style='text-indent:20px;'>In this paper we continue the work that we began in [<xref ref-type="bibr" rid="b6">6</xref>]. Given <inline-formula><tex-math id="M1">\begin{document}$ 1&lt;p&lt;N $\end{document}</tex-math></inline-formula>, two measurable functions <inline-formula><tex-math id="M2">\begin{document}$ V\left(r \right)\geq 0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ K\left(r\right)&gt; 0 $\end{document}</tex-math></inline-formula>, and a continuous function <inline-formula><tex-math id="M4">\begin{document}$ A(r) &gt;0 $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M5">\begin{document}$ r&gt;0 $\end{document}</tex-math></inline-formula>), we consider the quasilinear elliptic equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\mathrm{div}\left(A(|x| )|\nabla u|^{p-2} \nabla u\right) +V\left( \left| x\right| \right) |u|^{p-2}u = K(|x|) f(u) \quad \text{in }\mathbb{R}^{N}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where all the potentials <inline-formula><tex-math id="M6">\begin{document}$ A,V,K $\end{document}</tex-math></inline-formula> may be singular or vanishing, at the origin or at infinity. We find existence of nonnegative solutions by the application of variational methods, for which we need to study the compactness of the embedding of a suitable function space <inline-formula><tex-math id="M7">\begin{document}$ X $\end{document}</tex-math></inline-formula> into the sum of Lebesgue spaces <inline-formula><tex-math id="M8">\begin{document}$ L_{K}^{q_{1}}+L_{K}^{q_{2}} $\end{document}</tex-math></inline-formula>. The nonlinearity has a double-power super <inline-formula><tex-math id="M9">\begin{document}$ p $\end{document}</tex-math></inline-formula>-linear behavior, as <inline-formula><tex-math id="M10">\begin{document}$ f(t) = \min \left\{ t^{q_1 -1}, t^{q_2 -1} \right\} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M11">\begin{document}$ q_1,q_2&gt;p $\end{document}</tex-math></inline-formula> (recovering the power case if <inline-formula><tex-math id="M12">\begin{document}$ q_1 = q_2 $\end{document}</tex-math></inline-formula>). With respect to [<xref ref-type="bibr" rid="b6">6</xref>], in the present paper we assume some more hypotheses on <inline-formula><tex-math id="M13">\begin{document}$ V $\end{document}</tex-math></inline-formula>, and we are able to enlarge the set of values <inline-formula><tex-math id="M14">\begin{document}$ q_1 , q_2 $\end{document}</tex-math></inline-formula> for which we get existence results.</p>


Sign in / Sign up

Export Citation Format

Share Document