scholarly journals Multiplicity of solutions for a class of quasilinear elliptic equation involving the critical Sobolev and Hardy exponents

2009 ◽  
Vol 17 (1) ◽  
pp. 55-67 ◽  
Author(s):  
Sihua Liang ◽  
Jihui Zhang
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Analia Silva

AbstractThe aim of this paper is to extend previous results regarding the multiplicity of solutions for quasilinear elliptic problems with critical growth to the variable exponent case. We prove, in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear elliptic equation −Δ


2005 ◽  
Vol 2005 (18) ◽  
pp. 2871-2882 ◽  
Author(s):  
Marilena N. Poulou ◽  
Nikolaos M. Stavrakakis

We prove the existence of a simple, isolated, positive principal eigenvalue for the quasilinear elliptic equation−Δpu=λg(x)|u|p−2u,x∈ℝN,lim|x|→+∞u(x)=0, whereΔpu=div(|∇u|p−2∇u)is thep-Laplacian operator and the weight functiong(x), being bounded, changes sign and is negative and away from zero at infinity.


2003 ◽  
Vol 3 (4) ◽  
Author(s):  
Beatrice Acciaio ◽  
Patrizia Pucci

AbstractWe prove the existence of radial solutions of the quasilinear elliptic equation div(A(|Du|)Du) + f(u) = 0 in ℝ


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xuexin Li ◽  
Yong Wang ◽  
Yuming Xing

This paper obtains the Lipschitz and BMO norm estimates for the composite operator𝕄s∘Papplied to differential forms. Here,𝕄sis the Hardy-Littlewood maximal operator, andPis the potential operator. As applications, we obtain the norm estimates for the Jacobian subdeterminant and the generalized solution of the quasilinear elliptic equation.


Sign in / Sign up

Export Citation Format

Share Document