Alternative Enriched Test Spaces in the DPG Method for Singular Perturbation Problems

2019 ◽  
Vol 19 (3) ◽  
pp. 603-630 ◽  
Author(s):  
Jacob Salazar ◽  
Jaime Mora ◽  
Leszek Demkowicz

AbstractWe propose and investigate the application of alternative enriched test spaces in the discontinuous Petrov–Galerkin (DPG) finite element framework for singular perturbation linear problems, with an emphasis on 2D convection-dominated diffusion. Providing robust {L^{2}} error estimates for the field variables is considered a convenient feature for this class of problems, since this norm would not account for the large gradients present in boundary layers. With this requirement in mind, Demkowicz and others have previously formulated special test norms, which through DPG deliver the desired {L^{2}} convergence. However, robustness has only been verified through numerical experiments for tailored test norms which are problem-specific, whereas the quasi-optimal test norm (not problem specific) has failed such tests due to the difficulty to resolve the optimal test functions sought in the DPG technology. To address this issue (i.e. improve optimal test functions resolution for the quasi-optimal test norm), we propose to discretize the local test spaces with functions that depend on the perturbation parameter ϵ. Explicitly, we work with B-spline spaces defined on an ϵ-dependent Shishkin submesh. Two examples are run using adaptive h-refinement to compare the performance of proposed test spaces with that of standard test spaces. We also include a modified norm and a continuation strategy aiming to improve time performance and briefly experiment with these ideas.

2018 ◽  
Vol 18 (4) ◽  
pp. 639-652
Author(s):  
Thomas Führer ◽  
Norbert Heuer ◽  
Michael Karkulik ◽  
Rodolfo Rodríguez

AbstractWe propose and analyze a discretization scheme that combines the discontinuous Petrov–Galerkin and finite element methods. The underlying model problem is of general diffusion-advection-reaction type on bounded domains, with decomposition into two sub-domains. We propose a heterogeneous variational formulation that is of the ultra-weak (Petrov–Galerkin) form with broken test space in one part, and of Bubnov–Galerkin form in the other. A standard discretization with conforming approximation spaces and appropriate test spaces (optimal test functions for the ultra-weak part and standard test functions for the Bubnov–Galerkin part) gives rise to a coupled DPG-FEM scheme. We prove its well-posedness and quasi-optimal convergence. Numerical results confirm expected convergence orders.


Author(s):  
Andreas Dedner ◽  
Alice Hodson

Abstract We present a class of nonconforming virtual element methods for general fourth-order partial differential equations in two dimensions. We develop a generic approach for constructing the necessary projection operators and virtual element spaces. Optimal error estimates in the energy norm are provided for general linear fourth-order problems with varying coefficients. We also discuss fourth-order perturbation problems and present a novel nonconforming scheme which is uniformly convergent with respect to the perturbation parameter without requiring an enlargement of the space. Numerical tests are carried out to verify the theoretical results. We conclude with a brief discussion on how our approach can easily be applied to nonlinear fourth-order problems.


Sign in / Sign up

Export Citation Format

Share Document