variational formulation
Recently Published Documents


TOTAL DOCUMENTS

1049
(FIVE YEARS 144)

H-INDEX

55
(FIVE YEARS 6)

Author(s):  
Niccolo Giannetti ◽  
Moojoong Kim ◽  
Hiroaki Yoshimura ◽  
Kiyoshi Saito

2022 ◽  
pp. 108128652110661
Author(s):  
Andaluzia Matei ◽  
Madalina Osiceanu

A nonlinear boundary value problem arising from continuum mechanics is considered. The nonlinearity of the model arises from the constitutive law which is described by means of the subdifferential of a convex constitutive map. A bipotential [Formula: see text], related to the constitutive map and its Fenchel conjugate, is considered. Exploring the possibility to rewrite the constitutive law as a law governed by the bipotential [Formula: see text], a two-field variational formulation involving a variable convex set is proposed. Subsequently, we obtain existence and uniqueness results. Some properties of the solution are also discussed.


2021 ◽  
Author(s):  
Giacomo Capodaglio ◽  
Mark Petersen ◽  
Adrian Turner ◽  
Andrew Roberts

2021 ◽  
Vol 66 (4) ◽  
pp. 769-781
Author(s):  
Sihem Smata ◽  
◽  
Nemira Lebri ◽  

We consider a mathematical model which describes the dynamic pro- cess of contact between a piezoelectric body and an electrically conductive foun- dation. We model the material's behavior with a nonlinear electro-viscoelastic constitutive law with thermal e ects. Contact is described with the Signorini condition, a version of Coulomb's law of dry friction. A variational formulation of the model is derived, and the existence of a unique weak solution is proved. The proofs are based on the classical result of nonlinear rst order evolution inequali- ties, the equations with monotone operators, and the xed point arguments.


2021 ◽  
Vol 10 (12) ◽  
pp. 3549-3568
Author(s):  
A. Hamidat ◽  
A. Aissaoui

We consider a mathematical problem for quasistatic contact between a thermo-electro--elastic-viscoplastic body and an obstacle. The contact is modeled by a general normal damped response condition with friction law and heat exchange. We present a variational formulation of the problem and prove the existence and uniqueness of the weak solution. The proof is based on the formulation of four intermediate problems for the displacement field, the electric potential field and the temperature field, respectively. We prove the unique solvability of the intermediate problems, then we construct a contraction mapping whose unique fixed point is the solution of the original problem.


2021 ◽  
Vol 14 (1) ◽  
pp. 114-122
Author(s):  
Volodymyr Shymanskyi ◽  
Yaroslav Sokolovskyy

Aims: The aim of this study was to develop the mathematical models of the linear elasticity theory of biomaterials by taking into account their fractal structure. This study further aimed to construct a variational formulation of the problem, obtain the main relationships of the finite element method to calculate the rheological characteristics of a biomaterial with a fractal structure, and develop application software for calculating the components of the stress-strain state of biomaterials while considering their fractal structure. The obtained results were analyzed. Background: The development of adequate mathematical models of the linear elasticity theory for biomaterials with a fractal structure is an urgent scientific task. Finding its solution will make it possible to analyze the rheological behavior of biomaterials exposed to external loads by taking into account the existing effects of memory, spatial non-locality, self-organization, and deterministic chaos in the material. Objective: The objective of this study was the deformation process of biomaterials with a fractal structure under external load. Methods: The equations of the linear elasticity theory for the construction of the mathematical models of the deformation process of biomaterials under external load were used. Mathematical apparatus of integro-differentiation of fractional order to take into account the fractal structure of the biomaterial was used. A variational formulation of the linear elasticity problem while taking into account the fractal structure of the biomaterial was formulated. The finite element method with a piecewise linear basis for finding an approximate solution to the problem was used. Results: The main relations of the linear elasticity problem, which takes into account the fractal structure of the biomaterial, were obtained. A variational formulation of the problem was constructed. The main relations of the finite-element calculation of the linear elasticity problem of a biomaterial with a fractal structure using a piecewise-linear basis are found. The main components of the stress-strain state of the biomaterial exposed to external loads are found. Conclusion: Using the mathematical apparatus of integro-differentiation of fractional order in the construction of the mathematical models of the deformation process of biomaterials with a fractal structure makes it possible to take into account the existing effects of memory, spatial non-locality, self-organization, and deterministic chaos in the material. Also, this approach makes it possible to determine the residual stresses in the biomaterial, which play an important role in the appearance of stresses during repeated loads.


Sign in / Sign up

Export Citation Format

Share Document