Unipotent orbital integrals of spherical functions on p-adic 4 X 4 symplectic groups.

1993 ◽  
Vol 1993 (437) ◽  
pp. 181-216
1994 ◽  
Vol 46 (2) ◽  
pp. 308-323
Author(s):  
Rebecca A. Herb

AbstractLet G = GL(n, F) where F is a p-adic field, and let 𝓗(G) denote the Hecke algebra of spherical functions on G. Let u1,..., up denote a complete set of representatives for the unipotent conjugacy classes in G. For each 1 ≤ i ≤ p, let μi be the linear functional on such that μi(f) is the orbital integral of f over the orbit of ui. Waldspurger proved that the μi, 1 ≤ i ≤ p, are linearly independent. In this paper we give an elementary proof of Waldspurger's theorem which provides concrete information about the Hecke functions needed to separate orbits. We also prove a twisted version of Waldspurger's theorem and discuss the consequences for SL(n, F).


Author(s):  
Jean-Michel Bismut

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.


2019 ◽  
Vol 952 (10) ◽  
pp. 2-9
Author(s):  
Yu.M. Neiman ◽  
L.S. Sugaipova ◽  
V.V. Popadyev

As we know the spherical functions are traditionally used in geodesy for modeling the gravitational field of the Earth. But the gravitational field is not stationary either in space or in time (but the latter is beyond the scope of this article) and can change quite strongly in various directions. By its nature, the spherical functions do not fully display the local features of the field. With this in mind it is advisable to use spatially localized basis functions. So it is convenient to divide the region under consideration into segments with a nearly stationary field. The complexity of the field in each segment can be characterized by means of an anisotropic matrix resulting from the covariance analysis of the field. If we approach the modeling in this way there can arise a problem of poor coherence of local models on segments’ borders. To solve the above mentioned problem it is proposed in this article to use new basis functions with Mahalanobis metric instead of the usual Euclidean distance. The Mahalanobis metric and the quadratic form generalizing this metric enables us to take into account the structure of the field when determining the distance between the points and to make the modeling process continuous.


Author(s):  
Fan Gao

Abstract For a unitary unramified genuine principal series representation of a covering group, we study the associated R-group. We prove a formula relating the R-group to the dimension of the Whittaker space for the irreducible constituents of such a principal series representation. Moreover, for certain saturated covers of a semisimple simply connected group, we also propose a simpler conjectural formula for such dimensions. This latter conjectural formula is verified in several cases, including covers of the symplectic groups.


Sign in / Sign up

Export Citation Format

Share Document