hecke algebra
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 45)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Alexey Bufetov ◽  
Peter Nejjar

AbstractThis paper studies the mixing behavior of the Asymmetric Simple Exclusion Process (ASEP) on a segment of length N. Our main result is that for particle densities in (0, 1),  the total-variation cutoff window of ASEP is $$N^{1/3}$$ N 1 / 3 and the cutoff profile is $$1-F_{\mathrm {GUE}},$$ 1 - F GUE , where $$F_{\mathrm {GUE}}$$ F GUE is the Tracy-Widom distribution function. This also gives a new proof of the cutoff itself, shown earlier by Labbé and Lacoin. Our proof combines coupling arguments, the result of Tracy–Widom about fluctuations of ASEP started from the step initial condition, and exact algebraic identities coming from interpreting the multi-species ASEP as a random walk on a Hecke algebra.


Author(s):  
Robert Muth ◽  
Liron Speyer ◽  
Louise Sutton

AbstractPreviously, the last two authors found large families of decomposable Specht modules labelled by bihooks, over the Iwahori–Hecke algebra of type B. In most cases we conjectured that these were the only decomposable Specht modules labelled by bihooks, proving it in some instances. Inspired by a recent semisimplicity result of Bowman, Bessenrodt and the third author, we look back at our decomposable Specht modules and show that they are often either semisimple, or very close to being so. We obtain their exact structure and composition factors in these cases. In the process, we determine the graded decomposition numbers for almost all of the decomposable Specht modules indexed by bihooks.


Author(s):  
NIELS DISVELD ◽  
TOM H. KOORNWINDER ◽  
JASPER V. STOKMAN

AbstractNonsymmetric interpolation Laurent polynomials in n variables are introduced, with the interpolation points depending on q and on a n-tuple of parameters τ = (τ1, …, τn). When τi = stn − 1, Okounkov’s 3-parameter BCn-type interpolation Macdonald polynomials are recovered from the nonsymmetric interpolation Laurent polynomials through Hecke algebra symmetrisation with respect to a type Cn Hecke algebra action. In the Appendix we give some conjectures about extra vanishing, based on Mathematica computations in rank two.


2021 ◽  
Vol 157 (11) ◽  
pp. 2341-2376
Author(s):  
Changjian Su ◽  
Gufang Zhao ◽  
Changlong Zhong

Abstract We compare the $K$ -theory stable bases of the Springer resolution associated to different affine Weyl alcoves. We prove that (up to relabelling) the change of alcoves operators are given by the Demazure–Lusztig operators in the affine Hecke algebra. We then show that these bases are categorified by the Verma modules of the Lie algebra, under the localization of Lie algebras in positive characteristic of Bezrukavnikov, Mirković, and Rumynin. As an application, we prove that the wall-crossing matrices of the $K$ -theory stable bases coincide with the monodromy matrices of the quantum cohomology of the Springer resolution.


2021 ◽  
Vol 157 (10) ◽  
pp. 2133-2159
Author(s):  
Noriyuki Abe

Abstract For a Coxeter system and a representation $V$ of this Coxeter system, Soergel defined a category which is now called the category of Soergel bimodules and proved that this gives a categorification of the Hecke algebra when $V$ is reflection faithful. Elias and Williamson defined another category when $V$ is not reflection faithful and proved that this category is equivalent to the category of Soergel bimodules when $V$ is reflection faithful. Moreover, they proved the categorification theorem for their category with fewer assumptions on $V$ . In this paper, we give a bimodule description of the Elias–Williamson category and re-prove the categorification theorem.


Author(s):  
Chris Bowman ◽  
Anton Cox ◽  
Amit Hazi ◽  
Dimitris Michailidis

AbstractWe recast the classical notion of “standard tableaux" in an alcove-geometric setting and extend these classical ideas to all “reduced paths" in our geometry. This broader path-perspective is essential for implementing the higher categorical ideas of Elias–Williamson in the setting of quiver Hecke algebras. Our first main result is the construction of light leaves bases of quiver Hecke algebras. These bases are richer and encode more structural information than their classical counterparts, even in the case of the symmetric groups. Our second main result provides path-theoretic generators for the “Bott–Samelson truncation" of the quiver Hecke algebra.


2021 ◽  
Vol 157 (10) ◽  
pp. 2215-2241
Author(s):  
Robert Cass

Abstract Let $G$ be a split connected reductive group over a finite field of characteristic $p > 2$ such that $G_\text {der}$ is absolutely almost simple. We give a geometric construction of perverse $\mathbb {F}_p$ -sheaves on the Iwahori affine flag variety of $G$ which are central with respect to the convolution product. We deduce an explicit formula for an isomorphism from the spherical mod $p$ Hecke algebra to the center of the Iwahori mod $p$ Hecke algebra. We also give a formula for the central integral Bernstein elements in the Iwahori mod $p$ Hecke algebra. To accomplish these goals we construct a nearby cycles functor for perverse $\mathbb {F}_p$ -sheaves and we use Frobenius splitting techniques to prove some properties of this functor. We also prove that certain equal characteristic analogues of local models of Shimura varieties are strongly $F$ -regular, and hence they are $F$ -rational and have pseudo-rational singularities.


2021 ◽  
Vol 157 (9) ◽  
pp. 2046-2088
Author(s):  
Gebhard Böckle ◽  
Chandrashekhar B. Khare ◽  
Jeffrey Manning

In his work on modularity theorems, Wiles proved a numerical criterion for a map of rings $R\to T$ to be an isomorphism of complete intersections. He used this to show that certain deformation rings and Hecke algebras associated to a mod $p$ Galois representation at non-minimal level are isomorphic and complete intersections, provided the same is true at minimal level. In this paper we study Hecke algebras acting on cohomology of Shimura curves arising from maximal orders in indefinite quaternion algebras over the rationals localized at a semistable irreducible mod $p$ Galois representation $\bar {\rho }$ . If $\bar {\rho }$ is scalar at some primes dividing the discriminant of the quaternion algebra, then the Hecke algebra is still isomorphic to the deformation ring, but is not a complete intersection, or even Gorenstein, so the Wiles numerical criterion cannot apply. We consider a weight-2 newform $f$ which contributes to the cohomology of the Shimura curve and gives rise to an augmentation $\lambda _f$ of the Hecke algebra. We quantify the failure of the Wiles numerical criterion at $\lambda _f$ by computing the associated Wiles defect purely in terms of the local behavior at primes dividing the discriminant of the global Galois representation $\rho _f$ which $f$ gives rise to by the Eichler–Shimura construction. One of the main tools used in the proof is Taylor–Wiles–Kisin patching.


2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Anastasia Doikou ◽  
Agata Smoktunowicz

AbstractConnections between set-theoretic Yang–Baxter and reflection equations and quantum integrable systems are investigated. We show that set-theoretic R-matrices are expressed as twists of known solutions. We then focus on reflection and twisted algebras and we derive the associated defining algebra relations for R-matrices being Baxterized solutions of the A-type Hecke algebra $${\mathcal {H}}_N(q=1)$$ H N ( q = 1 ) . We show in the case of the reflection algebra that there exists a “boundary” finite sub-algebra for some special choice of “boundary” elements of the B-type Hecke algebra $${\mathcal {B}}_N(q=1, Q)$$ B N ( q = 1 , Q ) . We also show the key proposition that the associated double row transfer matrix is essentially expressed in terms of the elements of the B-type Hecke algebra. This is one of the fundamental results of this investigation together with the proof of the duality between the boundary finite subalgebra and the B-type Hecke algebra. These are universal statements that largely generalize previous relevant findings and also allow the investigation of the symmetries of the double row transfer matrix.


Sign in / Sign up

Export Citation Format

Share Document