A Novel Performance Enhancement Scheme for Doubly-Fed Induction Generator-Based Wind Power Systems under Voltage Sags and Swells

energyo ◽  
2019 ◽  
Author(s):  
Tapash Das ◽  
Jingxin Zhang ◽  
Hemanshu Pota
Author(s):  
Tapash Das ◽  
Jingxin Zhang ◽  
Hemanshu Pota

AbstractWind power is a major contributor in the renewable energy sector but it faces some issues regarding modern grid-code compliance. Popular wind power systems based on Doubly-Fed Induction Generators (DFIG) need additional protection under grid voltage disturbances. They also need to support the grid voltage under such transient occurrences. This paper presents a novel performance enhancement scheme for DFIGs subjected to symmetrical and asymmetrical voltage sags and swells at the Point of Common Coupling (PCC). The scheme comprises a protection system and a reactive power management system working simultaneously under the command of a supervisory control system. The protection system protects the DFIG converter by limiting the overcurrent in the Rotor Side Converter (RSC) of the DFIG and keeping the dc-link capacitor voltage within an acceptable range; whereas, the reactive power management supports the grid voltage by either injecting or absorbing reactive power to reduce the magnitude of voltage sags and swells. It is found that the performance of the DFIG wind generation system improves significantly under the proposed scheme. A grid-connected 9-MW DFIG wind farm is used for simulation in MATLAB/Simscape Power Systems.


2010 ◽  
Vol 35 (8) ◽  
pp. 1662-1670 ◽  
Author(s):  
Orlando Soares ◽  
Henrique Gonçalves ◽  
António Martins ◽  
Adriano Carvalho

2016 ◽  
Vol 10 (8) ◽  
pp. 1
Author(s):  
Faraz Chamani ◽  
Mohammad Satkin

Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With increase in wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. In this article, a controller is provided to control the active and reactive power of a wind system equipped with doubly fed induction generator. The generator is connected to the grid by a back to back converter that gets benefit from control system known as single periodic controller. Grid and generator side converters respectively control the generator speed and reactive power using proposed controller. In order to increase the accuracy of controller, we optimized its PI parameters using genetic optimization algorithm. Finally, simulation results conducted by the MATLAB software are shown. The results of simulation gained through this system, show the capability of proposed controller under error conditions for controlling active and reactive power and also elimination of harmonics caused by non-linear load.


Sign in / Sign up

Export Citation Format

Share Document