Heat kernel and Lipschitz–Besov spaces

2015 ◽  
Vol 27 (6) ◽  
Author(s):  
Alexander Grigor'yan ◽  
Liguang Liu

AbstractOn a metric measure space (

2020 ◽  
Vol 8 (1) ◽  
pp. 418-429
Author(s):  
Athanasios G. Georgiadis ◽  
George Kyriazis

Abstract We consider the general framework of a metric measure space satisfying the doubling volume property, associated with a non-negative self-adjoint operator, whose heat kernel enjoys standard Gaussian localization. We prove embedding theorems between Triebel-Lizorkin spaces associated with operators. Embeddings for non-classical Triebel-Lizorkin and (both classical and non-classical) Besov spaces are proved as well. Our result generalize the Euclidean case and are new for many settings of independent interest such as the ball, the interval and Riemannian manifolds.


2014 ◽  
Vol 91 (2) ◽  
pp. 286-302
Author(s):  
GUORONG HU

AbstractLet $(X,d,{\it\mu})$ be a metric measure space satisfying the doubling, reverse doubling and noncollapsing conditions. Let $\mathscr{L}$ be a nonnegative self-adjoint operator on $L^{2}(X,d{\it\mu})$ satisfying a pointwise Gaussian upper bound estimate and Hölder continuity for its heat kernel. In this paper, we introduce the Hardy spaces $H_{\mathscr{L}}^{p}(X)$, $0<p\leq 1$, associated to $\mathscr{L}$ in terms of grand maximal functions and show that these spaces are equivalently characterised by radial and nontangential maximal functions.


2017 ◽  
Vol 2017-3 (103) ◽  
pp. 19-28
Author(s):  
Luigi Ambrosio ◽  
Nicola Gigli ◽  
Giuseppe Savaré

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Toni Heikkinen

Let Φ be anN-function. We show that a functionu∈LΦ(ℝn)belongs to the Orlicz-Sobolev spaceW1,Φ(ℝn)if and only if it satisfies the (generalized) Φ-Poincaré inequality. Under more restrictive assumptions on Φ, an analog of the result holds in a general metric measure space setting.


2010 ◽  
Vol 106 (2) ◽  
pp. 283 ◽  
Author(s):  
Oscar Blasco ◽  
Vicente Casanova ◽  
Joaquín Motos

Given a metric measure space $(X,d,\mu)$, a weight $w$ defined on $(0,\infty)$ and a kernel $k_w(x,y)$ satisfying the standard fractional integral type estimates, we study the boundedness of the operators $K_w f(x)=\int_X k_w(x,y)f(y)\,d\mu(y)$ and $\tilde K_w f(x)=\int_X (k_w(x,y)-k_w(x_0,y))f(y)\,d\mu(y)$ on Lebesgue spaces $L^p(\mu)$ and generalized Lipschitz spaces $\mathrm{Lip}_\phi$, respectively, for certain range of the parameters depending on the $n$-dimension of $\mu$ and some indices associated to the weight $w$.


Sign in / Sign up

Export Citation Format

Share Document