Mutations of simple-minded systems in Calabi–Yau categories generated by a spherical object

2017 ◽  
Vol 29 (5) ◽  
pp. 1065-1081 ◽  
Author(s):  
Raquel Coelho Simões

AbstractIn this article, we give a definition and a classification of ‘higher’ simple-minded systems in triangulated categories generated by spherical objects with negative Calabi–Yau dimension. We also study mutations of this class of objects and that of ‘higher’ Hom-configurations and Riedtmann configurations. This gives an explicit analogue of the ‘nice’ mutation theory exhibited in cluster-tilting theory.

2016 ◽  
Vol 225 ◽  
pp. 64-99 ◽  
Author(s):  
ROBERT J. MARSH ◽  
YANN PALU

If $T$ and $T^{\prime }$ are two cluster-tilting objects of an acyclic cluster category related by a mutation, their endomorphism algebras are nearly Morita equivalent (Buan et al., Cluster-tilted algebras, Trans. Amer. Math. Soc. 359(1) (2007), 323–332 (electronic)); that is, their module categories are equivalent “up to a simple module”. This result has been generalized by Yang, using a result of Plamondon, to any simple mutation of maximal rigid objects in a 2-Calabi–Yau triangulated category. In this paper, we investigate the more general case of any mutation of a (non-necessarily maximal) rigid object in a triangulated category with a Serre functor. In that setup, the endomorphism algebras might not be nearly Morita equivalent, and we obtain a weaker property that we call pseudo-Morita equivalence. Inspired by Buan and Marsh (From triangulated categories to module categories via localization II: calculus of fractions, J. Lond. Math. Soc. (2) 86(1) (2012), 152–170; From triangulated categories to module categories via localisation, Trans. Amer. Math. Soc. 365(6) (2013), 2845–2861), we also describe our result in terms of localizations.


2018 ◽  
Vol 2018 (738) ◽  
pp. 149-202 ◽  
Author(s):  
Osamu Iyama ◽  
Michael Wemyss

Abstract In this paper we define and study triangulated categories in which the Hom-spaces have Krull dimension at most one over some base ring (hence they have a natural 2-step filtration), and each factor of the filtration satisfies some Calabi–Yau type property. If \mathcal{C} is such a category, we say that \mathcal{C} is Calabi–Yau with \dim\mathcal{C}\leq 1 . We extend the notion of Calabi–Yau reduction to this setting, and prove general results which are an analogue of known results in cluster theory. Such categories appear naturally in the setting of Gorenstein singularities in dimension three as the stable categories \mathop{\underline{\textup{CM}}}R of Cohen–Macaulay modules. We explain the connection between Calabi–Yau reduction of \mathop{\underline{\textup{CM}}}R and both partial crepant resolutions and \mathbb{Q} -factorial terminalizations of \operatorname{Spec}R , and we show under quite general assumptions that Calabi–Yau reductions exist. In the remainder of the paper we focus on complete local cA_{n} singularities R. By using a purely algebraic argument based on Calabi–Yau reduction of \mathop{\underline{\textup{CM}}}R , we give a complete classification of maximal modifying modules in terms of the symmetric group, generalizing and strengthening results in [I. Burban, O. Iyama, B. Keller and I. Reiten, Cluster tilting for one-dimensional hypersurface singularities, Adv. Math. 217 2008, 6, 2443–2484], [H. Dao and C. Huneke, Vanishing of Ext, cluster tilting and finite global dimension of endomorphism rings, Amer. J. Math. 135 2013, 2, 561–578], where we do not need any restriction on the ground field. We also describe the mutation of modifying modules at an arbitrary (not necessarily indecomposable) direct summand. As a corollary when k=\mathbb{C} we obtain many autoequivalences of the derived category of the \mathbb{Q} -factorial terminalizations of \operatorname{Spec}R .


2015 ◽  
Vol 27 (2) ◽  
Author(s):  
Thorsten Holm ◽  
Peter Jørgensen

AbstractThis paper shows a new phenomenon in higher cluster tilting theory. For each positive integerOn the one hand, theThe category 𝖢 is the algebraic triangulated category generated by a (


Author(s):  
Amalendu Krishna

AbstractFor a tame Deligne-Mumford stack X with the resolution property, we show that the Cartan-Eilenberg resolutions of unbounded complexes of quasicoherent sheaves are K-injective resolutions. This allows us to realize the derived category of quasi-coherent sheaves on X as a reflexive full subcategory of the derived category of X-modules.We then use the results of Neeman and recent results of Kresch to establish the localization theorem of Thomason-Trobaugh for the K-theory of perfect complexes on stacks of above type which have coarse moduli schemes. As a byproduct, we get a generalization of Krause's result about the stable derived categories of schemes to such stacks.We prove Thomason's classification of thick triangulated tensor subcategories of D(perf / X). As the final application of our localization theorem, we show that the spectrum of D(perf / X) as defined by Balmer, is naturally isomorphic to the coarse moduli scheme of X, answering a question of Balmer for the tensor triangulated categories arising from Deligne-Mumford stacks.


2013 ◽  
Vol 150 (3) ◽  
pp. 415-452 ◽  
Author(s):  
Takahide Adachi ◽  
Osamu Iyama ◽  
Idun Reiten

AbstractThe aim of this paper is to introduce $\tau $-tilting theory, which ‘completes’ (classical) tilting theory from the viewpoint of mutation. It is well known in tilting theory that an almost complete tilting module for any finite-dimensional algebra over a field $k$ is a direct summand of exactly one or two tilting modules. An important property in cluster-tilting theory is that an almost complete cluster-tilting object in a 2-CY triangulated category is a direct summand of exactly two cluster-tilting objects. Reformulated for path algebras $kQ$, this says that an almost complete support tilting module has exactly two complements. We generalize (support) tilting modules to what we call (support) $\tau $-tilting modules, and show that an almost complete support $\tau $-tilting module has exactly two complements for any finite-dimensional algebra. For a finite-dimensional $k$-algebra $\Lambda $, we establish bijections between functorially finite torsion classes in $ \mathsf{mod} \hspace{0.167em} \Lambda $, support $\tau $-tilting modules and two-term silting complexes in ${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$. Moreover, these objects correspond bijectively to cluster-tilting objects in $ \mathcal{C} $ if $\Lambda $ is a 2-CY tilted algebra associated with a 2-CY triangulated category $ \mathcal{C} $. As an application, we show that the property of having two complements holds also for two-term silting complexes in ${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$.


2019 ◽  
Vol 301 (2) ◽  
pp. 703-740 ◽  
Author(s):  
Wuzhong Yang ◽  
Panyue Zhou ◽  
Bin Zhu

Sign in / Sign up

Export Citation Format

Share Document