scholarly journals Brauer relations in finite groups II: Quasi-elementary groups of order paq

2014 ◽  
Vol 17 (3) ◽  
Author(s):  
Alex Bartel ◽  
Tim Dokchitser

Abstract.This is the second in a series of papers investigating the space of Brauer relations of a finite group, the kernel of the natural map from its Burnside ring to the rational representation ring. The first paper classified all primitive Brauer relations, that is those that do not come from proper subquotients. In the case of quasi-elementary groups the description is intricate, and it does not specify groups that have primitive relations in terms of generators and relations. In this paper we provide such a classification in terms of generators and relations for quasi-elementary groups of order

2018 ◽  
Vol 168 (1) ◽  
pp. 75-117 ◽  
Author(s):  
ALEX TORZEWSKI

AbstractLet G be a finite group and p be a prime. We investigate isomorphism invariants of $\mathbb{Z}_p$[G]-lattices whose extension of scalars to $\mathbb{Q}_p$ is self-dual, called regulator constants. These were originally introduced by Dokchitser–Dokchitser in the context of elliptic curves. Regulator constants canonically yield a pairing between the space of Brauer relations for G and the subspace of the representation ring for which regulator constants are defined. For all G, we show that this pairing is never identically zero. For formal reasons, this pairing will, in general, have non-trivial kernel. But, if G has cyclic Sylow p-subgroups and we restrict to considering permutation lattices, then we show that the pairing is non-degenerate modulo the formal kernel. Using this we can show that, for certain groups, including dihedral groups of order 2p for p odd, the isomorphism class of any $\mathbb{Z}_p$[G]-lattice whose extension of scalars to $\mathbb{Q}_p$ is self-dual, is determined by its regulator constants, its extension of scalars to $\mathbb{Q}_p$, and a cohomological invariant of Yakovlev.


1961 ◽  
Vol 57 (4) ◽  
pp. 731-733 ◽  
Author(s):  
C. T. C. Wall

Recent work of Atiyah (1) on the Grothendieck rings of classifying spaces of finite groups has yielded, among many other interesting results, a spectral sequence relating the simple integer cohomology of a finite group to its representation ring. He has determined the first differential operator of the spectral sequence which affects the p-part of the cohomology, and the question naturally arises, when is it the only non-zero one. My object in this note is to show that this is so for a large class of groups.


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


Author(s):  
Ingrid Bauer ◽  
Christian Gleissner

AbstractIn this paper the authors study quotients of the product of elliptic curves by a rigid diagonal action of a finite group G. It is shown that only for $$G = {{\,\mathrm{He}\,}}(3), {\mathbb {Z}}_3^2$$ G = He ( 3 ) , Z 3 2 , and only for dimension $$\ge 4$$ ≥ 4 such an action can be free. A complete classification of the singular quotients in dimension 3 and the smooth quotients in dimension 4 is given. For the other finite groups a strong structure theorem for rigid quotients is proven.


2021 ◽  
Vol 58 (2) ◽  
pp. 147-156
Author(s):  
Qingjun Kong ◽  
Xiuyun Guo

We introduce a new subgroup embedding property in a finite group called s∗-semipermutability. Suppose that G is a finite group and H is a subgroup of G. H is said to be s∗-semipermutable in G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K is s-semipermutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < |D| < |P | and study the structure of G under the assumption that every subgroup H of P with |H | = |D| is s∗-semipermutable in G. Some recent results are generalized and unified.


2019 ◽  
Vol 22 (2) ◽  
pp. 297-312 ◽  
Author(s):  
Victor S. Monakhov ◽  
Alexander A. Trofimuk

AbstractLetGbe a finite group. In this paper we obtain some sufficient conditions for the supersolubility ofGwith two supersoluble non-conjugate subgroupsHandKof prime index, not necessarily distinct. It is established that the supersoluble residual of such a group coincides with the nilpotent residual of the derived subgroup. We prove thatGis supersoluble in the following cases: one of the subgroupsHorKis nilpotent; the derived subgroup{G^{\prime}}ofGis nilpotent;{|G:H|=q>r=|G:K|}andHis normal inG. Also the supersolubility ofGwith two non-conjugate maximal subgroupsMandVis obtained in the following cases: all Sylow subgroups ofMand ofVare seminormal inG; all maximal subgroups ofMand ofVare seminormal inG.


1997 ◽  
Vol 40 (2) ◽  
pp. 243-246
Author(s):  
Yanming Wang

A subgroup H is called c-normal in a group G if there exists a normal subgroup N of G such that HN = G and H∩N ≤ HG, where HG =: Core(H) = ∩g∈GHg is the maximal normal subgroup of G which is contained in H. We use a result on primitive groups and the c-normality of maximal subgroups of a finite group G to obtain results about the influence of the set of maximal subgroups on the structure of G.


2008 ◽  
Vol 07 (06) ◽  
pp. 735-748 ◽  
Author(s):  
BEHROOZ KHOSRAVI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. It is proved that if p > 11 and p ≢ 1 (mod 12), then PSL(2,p) is uniquely determined by its prime graph. Also it is proved that if p > 7 is a prime number and Γ(G) = Γ(PSL(2,p2)), then G ≅ PSL(2,p2) or G ≅ PSL(2,p2).2, the non-split extension of PSL(2,p2) by ℤ2. In this paper as the main result we determine finite groups G such that Γ(G) = Γ(PSL(2,q)), where q = pk. As a consequence of our results we prove that if q = pk, k > 1 is odd and p is an odd prime number, then PSL(2,q) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph.


Sign in / Sign up

Export Citation Format

Share Document