scholarly journals Regulator constants of integral representations of finite groups

2018 ◽  
Vol 168 (1) ◽  
pp. 75-117 ◽  
Author(s):  
ALEX TORZEWSKI

AbstractLet G be a finite group and p be a prime. We investigate isomorphism invariants of $\mathbb{Z}_p$[G]-lattices whose extension of scalars to $\mathbb{Q}_p$ is self-dual, called regulator constants. These were originally introduced by Dokchitser–Dokchitser in the context of elliptic curves. Regulator constants canonically yield a pairing between the space of Brauer relations for G and the subspace of the representation ring for which regulator constants are defined. For all G, we show that this pairing is never identically zero. For formal reasons, this pairing will, in general, have non-trivial kernel. But, if G has cyclic Sylow p-subgroups and we restrict to considering permutation lattices, then we show that the pairing is non-degenerate modulo the formal kernel. Using this we can show that, for certain groups, including dihedral groups of order 2p for p odd, the isomorphism class of any $\mathbb{Z}_p$[G]-lattice whose extension of scalars to $\mathbb{Q}_p$ is self-dual, is determined by its regulator constants, its extension of scalars to $\mathbb{Q}_p$, and a cohomological invariant of Yakovlev.

1953 ◽  
Vol 5 ◽  
pp. 344-355 ◽  
Author(s):  
Jean-Marie Maranda

It has been shown by Diederichsen [2] that for integral representations of a finite group, the irreducible constituents in any complete reduction are not necessarily unique up to order and unimodular equivalence. In this same article, it is shown that for certain finite groups, such as the cyclic group of order 4, there are infinitely many classes of indecomposable representations under unimodular equivalence.


1980 ◽  
Vol 32 (3) ◽  
pp. 714-733 ◽  
Author(s):  
N. B. Tinberg

1. Introduction.Let p be a prime number. A finite group G = (G, B, N, R, U) is called a split(B, N)-pair of characteristic p and rank n if(i) G has a (B, N)-pair (see [3, Definition 2.1, p. B-8]) where H= B ⋂ N and the Weyl group W= N/H is generated by the set R= ﹛ω 1,… , ω n) of “special generators.”(ii) H= ⋂n∈N n-1Bn(iii) There exists a p-subgroup U of G such that B = UH is a semidirect product, and H is abelian with order prime to p.A (B, N)-pair satisfying (ii) is called a saturated (B, N)-pair. We call a finite group G which satisfies (i) and (iii) an unsaturated split (B, N)- pair. (Unsaturated means “not necessarily saturated”.)


1975 ◽  
Vol 27 (6) ◽  
pp. 1349-1354
Author(s):  
G. de B. Robinson

Of recent years the author has been interested in developing a representation theory of the algebra of representations [5; 6] of a finite group G, and dually of its classes [7]. In this paper Frobenius’ Reciprocity Theorem provides a starting point for the introduction of the inverses R-1 and I-1 of the restricting and inducing operators R and I. The condition under which such inverse operations are available is that the classes of G do not splitin the subgroup Ĝ. When this condition is satisfied the application of these operations to inner products is of interest.


1992 ◽  
Vol 02 (01) ◽  
pp. 103-116
Author(s):  
SAMUEL M. VOVSI

Let K be a commutative noetherian ring. It is proved that a representation of a finite group on a K-module of finite length or on a K-module of finite exponent has a finite basis for its identities. In particular, this implies an earlier result of Nguyen Hung Shon and the author stating that every representation of a finite group over a field is finitely based. The problem whether every representation of a finite group over a commutative noetherian ring is finitely based still remains open.


2021 ◽  
pp. 1-16
Author(s):  
KANTO IRIMOTO ◽  
ENRIQUE TORRES-GIESE

Abstract The problem of finding the number of ordered commuting tuples of elements in a finite group is equivalent to finding the size of the solution set of the system of equations determined by the commutator relations that impose commutativity among any pair of elements from an ordered tuple. We consider this type of systems for the case of ordered triples and express the size of the solution set in terms of the irreducible characters of the group. The obtained formulas are natural extensions of Frobenius’ character formula that calculates the number of ways a group element is a commutator of an ordered pair of elements in a finite group. We discuss how our formulas can be used to study the probability distributions afforded by these systems of equations, and we show explicit calculations for dihedral groups.


1988 ◽  
Vol 38 (2) ◽  
pp. 207-220 ◽  
Author(s):  
David Easdown ◽  
Cheryl E. Praeger

The minimal (faithful) degree μ(G) of a finite group G is the least positive integer n such that G ≲ Sn. Clearly if H ≤ G then μ(H) ≤ μ(G). However if N ◃ G then it is possible for μ(G/N) to be greater than μ(G); such groups G are here called exceptional. Properties of exceptional groups are investigated and several families of exceptional groups are given. For example it is shown that the smallest exceptional groups have order 32.


1981 ◽  
Vol 22 (2) ◽  
pp. 151-154 ◽  
Author(s):  
Shigeo Koshitani

Let G be a finite group and p a prime number. About five years ago I. M. Isaacs and S. D. Smith [5] gave several character-theoretic characterizations of finite p-solvable groups with p-length 1. Indeed, they proved that if P is a Sylow p-subgroup of G then the next four conditions (l)–(4) are equivalent:(1) G is p-solvable of p-length 1.(2) Every irreducible complex representation in the principal p-block of G restricts irreducibly to NG(P).(3) Every irreducible complex representation of degree prime to p in the principal p-block of G restricts irreducibly to NG(P).(4) Every irreducible modular representation in the principal p-block of G restricts irreducibly to NG(P).


2006 ◽  
Vol 58 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Vahid Dabbaghian-Abdoly

AbstractLet G be a finite group and χ be an irreducible character of G. An efficient and simple method to construct representations of finite groups is applicable whenever G has a subgroup H such that χH has a linear constituent with multiplicity 1. In this paper we show (with a few exceptions) that if G is a simple group or a covering group of a simple group and χ is an irreducible character of G of degree less than 32, then there exists a subgroup H (often a Sylow subgroup) of G such that χH has a linear constituent with multiplicity 1.


2004 ◽  
Vol 69 (1) ◽  
pp. 161-171 ◽  
Author(s):  
Emanuele Pacifici

We prove that, given a quasi-primitive complex representation D for a finite group G, the possible ways of decomposing D as an inner tensor product of two projective representations of G are parametrised in terms of the group structure of G. More explicitly, we construct a bijection between the set of such decompositions and a particular interval in the lattice of normal subgroups of G.


Author(s):  
P. N. Hoffmann ◽  
J. F. Humphreys

The projective representations of a finite group G over a field K are divided into sets, each parametrized by an element of the group H2(G, Kx). The latter is the Schur multiplier M(G) when K = ℂ.


Sign in / Sign up

Export Citation Format

Share Document