cohomological invariant
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2018 ◽  
Vol 168 (1) ◽  
pp. 75-117 ◽  
Author(s):  
ALEX TORZEWSKI

AbstractLet G be a finite group and p be a prime. We investigate isomorphism invariants of $\mathbb{Z}_p$[G]-lattices whose extension of scalars to $\mathbb{Q}_p$ is self-dual, called regulator constants. These were originally introduced by Dokchitser–Dokchitser in the context of elliptic curves. Regulator constants canonically yield a pairing between the space of Brauer relations for G and the subspace of the representation ring for which regulator constants are defined. For all G, we show that this pairing is never identically zero. For formal reasons, this pairing will, in general, have non-trivial kernel. But, if G has cyclic Sylow p-subgroups and we restrict to considering permutation lattices, then we show that the pairing is non-degenerate modulo the formal kernel. Using this we can show that, for certain groups, including dihedral groups of order 2p for p odd, the isomorphism class of any $\mathbb{Z}_p$[G]-lattice whose extension of scalars to $\mathbb{Q}_p$ is self-dual, is determined by its regulator constants, its extension of scalars to $\mathbb{Q}_p$, and a cohomological invariant of Yakovlev.


2011 ◽  
Vol 63 (5) ◽  
pp. 1083-1106 ◽  
Author(s):  
Tasho Kaletha

Abstract For a maximal torus in a quasi-split semi-simple simply-connected group over a local field of characteristic 0, Langlands and Shelstad constructed a cohomological invariant called the splitting invariant, which is an important component of their endoscopic transfer factors. We study this invari- ant in the case of a split real group and prove a decomposition theorem which expresses this invariant for a general torus as a product of the corresponding invariants for simple tori. We also show how this reduction formula allows for the comparison of splitting invariants between different tori in the given real group.


2008 ◽  
Vol 73 (3) ◽  
pp. 1036-1050
Author(s):  
Immanuel Halupczok

AbstractDenef and Loeser denned a map from the Grothendieck ring of sets definable in pseudo-finite fields to the Grothendieck ring of Chow motives, thus enabling to apply any cohomological invariant to these sets. We generalize this to perfect, pseudo algebraically closed fields with pro-cyclic Galois group.In addition, we define some maps between different Grothendieck rings of definable sets which provide additional information, not contained in the associated motive. In particular we infer that the map of Denef-Loeser is not injective.


1994 ◽  
Vol 83 (1) ◽  
pp. 1-18 ◽  
Author(s):  
M. G. C. Andrade ◽  
E. L. C. Fanti

Sign in / Sign up

Export Citation Format

Share Document