Concave Rectangle Photonic Crystal Ring Resonator for Ultra-Fast All-Optical Modulation

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Sana Rebhi ◽  
Radhouene Massoudi ◽  
Monia Najjar

AbstractIn this paper, an ultra-fast all-optical modulator, based on a new shape of nonlinear photonic crystal ring resonator, is designed and studied. Numerical methods such as plane wave expansion (PWE) and finite-difference time domain (FDTD) are used to perform simulations. The modulation technique consists of carrier light controlling by means of input light signal and Kerr effect. The investigation of extinction ratio and insertion loss within the carrier input power shows that the choice of 0.7 W is the optimal value of that power to ensure the tradeoff between both characteristics. The suggested modulator demonstrates an excellent extinction ratio about 20.8018, a very low insertion loss of −13.98 and a short switching time about 13.4 ps. According to the obtained results, the modulator can be considered as an ultra-fast and ultra-compact optical component.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hassan Mamnoon-Sofiani ◽  
Sahel Javahernia

Abstract All optical logic gates are building blocks for all optical data processors. One way of designing optical logic gates is using threshold switching which can be realized by combining an optical resonator with nonlinear Kerr effect. In this paper we showed that a novel structure consisting of nonlinear photonic crystal ring resonator which can be used for realizing optical NAND/NOR and majority gates. The delay time of the proposed NAND/NOR and majority gates are 2.5 ps and 1.5 ps respectively. Finite difference time domain and plane wave expansion methods were used for simulating the proposed optical logic gates. The total footprint of the proposed structure is about 988 μm2.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sivasindhu Masilamani ◽  
Punniakodi Samundiswary

AbstractRecently, the photonic crystal–based optical components and devices have attracted many researchers’ attention because of its nanoscale size which makes it suitable for the photonic integrated applications. Hence, the design of all-optical switch based on photonic crystal structure have been investigated in the past few decades to meet the requirement of ultracompact size with optimized performances such as fast response time, high extinction ratio with low insertion loss. Here, the design of directional coupler–based all-optical switch operating at the wavelength of 1550 nm is proposed with new design values. The resonant operating wavelength of the switch is identified with the help of finite element method. Then, the cross-state switching operation is analysed with the help of finite-difference time-domain method by applying a nonlinear optical Kerr effect switching mechanism. The important performance metrics of the proposed design such as insertion loss, extinction ratio, directivity and the response time are obtained as −0.008 , 26.98, 20.44 dB and 0.13ps, respectively. The total footprint of the proposed optical switch is approximately 128 µm2.


2014 ◽  
Vol 329 ◽  
pp. 109-112 ◽  
Author(s):  
Junjie Bao ◽  
Jun Xiao ◽  
Lin Fan ◽  
Xiaoxu Li ◽  
Yunfei Hai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document