A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces
Abstract In this paper, we consider the maximal operator related to the Laplace-Bessel differential operator ( B B -maximal operator) on L p ( ⋅ ) , γ ( R k , + n ) {L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces. We will give a necessary condition for the boundedness of the B B -maximal operator on variable exponent Lebesgue spaces. Moreover, we will obtain that the B B -maximal operator is not bounded on L p ( ⋅ ) , γ ( R k , + n ) {L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces in the case of p − = 1 {p}_{-}=1 . We will also prove the boundedness of the fractional maximal function associated with the Laplace-Bessel differential operator (fractional B B -maximal function) on L p ( ⋅ ) , γ ( R k , + n ) {L}_{p\left(\cdot ),\gamma }\left({{\mathbb{R}}}_{k,+}^{n}) variable exponent Lebesgue spaces.