Entire solutions of certain type of non-linear differential equations

2020 ◽  
Vol 70 (1) ◽  
pp. 87-94
Author(s):  
Bo Xue

AbstractUtilizing Nevanlinna’s value distribution theory of meromorphic functions, we study transcendental entire solutions of the following type nonlinear differential equations in the complex plane$$\begin{array}{} \displaystyle f^{n}(z)+P(z,f,f',\ldots,f^{(t)})=P_{1}\text{e}^{\alpha_{1}z}+P_{2}\text{e}^{\alpha_{2}z}+P_{3}\text{e}^{\alpha_{3}z}, \end{array}$$where Pj and αi are nonzero constants for j = 1, 2, 3, such that |α1| > |α2| > |α3| and P(z, f, f′, …, f(t) is an algebraic differential polynomial in f(z) of degree no greater than n – 1.

2015 ◽  
Vol 93 (2) ◽  
pp. 260-271
Author(s):  
JUHA-MATTI HUUSKO

We obtain lower bounds for the growth of solutions of higher order linear differential equations, with coefficients analytic in the unit disc of the complex plane, by localising the equations via conformal maps and applying known results for the unit disc. As an example, we study equations in which the coefficients have a certain explicit exponential growth at one point on the boundary of the unit disc and consider the iterated $M$-order of solutions.


2002 ◽  
Vol 66 (2) ◽  
pp. 331-343 ◽  
Author(s):  
J. Heittokangas ◽  
R. Korhonen ◽  
I. Laine

In this paper, we consider the growth of meromorphic solutions of nonlinear differential equations of the form L (f) + P (z, f) = h (z), where L (f) denotes a linear differential polynomial in f, P (z, f) is a polynomial in f, both with small meromorphic coefficients, and h (z) is a meromorphic function. Specialising to L (f) − p (z) fn = h (z), where p (z) is a small meromorphic function, we consider the uniqueness of meromorphic solutions with few poles only. Our results complement earlier ones due to C.-C. Yang.


2001 ◽  
Vol 64 (3) ◽  
pp. 377-380 ◽  
Author(s):  
Chung-Chun Yang

In this note, we shall study, via Nevanlinna's value distribution theory, the uniqueness of transcendental entire solutions of the following type of nonlinear differential equation: (*) L (f (z)) – p (z) fn(z) = h (z), where L (f) denotes a linear differential polynomial in f with polynomials as its co-efficients, p (z) a polynomial (≢ 0), h an entire function, and n an integer ≥ 3. We show that if the equation (*) has a finite order transcendental entire solution, then it must be unique, unless L (f) ≡ 0.


Sign in / Sign up

Export Citation Format

Share Document