A general maximum principle for mean-field forward-backward doubly stochastic differential equations with jumps processes

2019 ◽  
Vol 27 (1) ◽  
pp. 9-25 ◽  
Author(s):  
Dahbia Hafayed ◽  
Adel Chala

Abstract In this paper, we deal with an optimal control, where the system is driven by a mean-field forward-backward doubly stochastic differential equation with jumps diffusion. We assume that the set of admissible control is convex, and we establish a necessary as well as a sufficient optimality condition for such system.

2020 ◽  
Vol 28 (1) ◽  
pp. 1-18
Author(s):  
Dahbia Hafayed ◽  
Adel Chala

AbstractIn this paper, we are concerned with an optimal control problem where the system is driven by a backward doubly stochastic differential equation with risk-sensitive performance functional. We generalized the result of Chala [A. Chala, Pontryagin’s risk-sensitive stochastic maximum principle for backward stochastic differential equations with application, Bull. Braz. Math. Soc. (N. S.) 48 2017, 3, 399–411] to a backward doubly stochastic differential equation by using the same contribution of Djehiche, Tembine and Tempone in [B. Djehiche, H. Tembine and R. Tempone, A stochastic maximum principle for risk-sensitive mean-field type control, IEEE Trans. Automat. Control 60 2015, 10, 2640–2649]. We use the risk-neutral model for which an optimal solution exists as a preliminary step. This is an extension of an initial control system in this type of problem, where an admissible controls set is convex. We establish necessary as well as sufficient optimality conditions for the risk-sensitive performance functional control problem. We illustrate the paper by giving two different examples for a linear quadratic system, and a numerical application as second example.


2020 ◽  
Vol 5 (2) ◽  
pp. 205-216
Author(s):  
Mostapha Abdelouahab Saouli

AbstractIn this paper we prove the existence of a solution for mean-field reflected backward doubly stochastic differential equations (MF-RBDSDEs) with one continuous barrier and discontinuous generator (left-continuous). By a comparison theorem establish here for MF-RBDSDEs, we provide a minimal or a maximal solution to MF-RBDSDEs.


2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Shaolin Ji ◽  
Qingmeng Wei ◽  
Xiumin Zhang

We study the optimal control problem of a controlled time-symmetric forward-backward doubly stochastic differential equation with initial-terminal state constraints. Applying the terminal perturbation method and Ekeland’s variation principle, a necessary condition of the stochastic optimal control, that is, stochastic maximum principle, is derived. Applications to backward doubly stochastic linear-quadratic control models are investigated.


2021 ◽  
Vol 6 ◽  
pp. 5-12
Author(s):  
Pavel Knopov ◽  
◽  
Tatyana Pepelyaeva ◽  
Sergey Shpiga ◽  
◽  
...  

In recent years, a new direction of research has emerged in the theory of stochastic differential equations, namely, stochastic differential equations with a fractional Wiener process. This class of processes makes it possible to describe adequately many real phenomena of a stochastic nature in financial mathematics, hydrology, biology, and many other areas. These phenomena are not always described by stochastic systems satisfying the conditions of strong mixing, or weak dependence, but are described by systems with a strong dependence, and this strong dependence is regulated by the so-called Hurst parameter, which is a characteristic of this dependence. In this article, we consider the problem of the existence of an optimal control for a stochastic differential equation with a fractional Wiener process, in which the diffusion coefficient is present, which gives more accurate simulation results. An existence theorem is proved for an optimal control of a process that satisfies the corresponding stochastic differential equation. The main result was obtained using the Girsanov theorem for such processes and the existence theorem for a weak solution for stochastic equations with a fractional Wiener process.


2011 ◽  
Vol 383-390 ◽  
pp. 972-975
Author(s):  
Ramzan Rezaeyan

Stochastic differential equations(SDEs) is fundamental for the modeling in engineering and science. The goal of this paper is study optimal control of the solution a SDE. We consider the optimal control for risky stocks stochastic model with using of the SDE.


Sign in / Sign up

Export Citation Format

Share Document