The V-density of eigenvalues of non symmetric random matrices and rigorous proof of the strong Circular law

Author(s):  
V. L. GIRKO
2018 ◽  
Vol 26 (2) ◽  
pp. 89-116 ◽  
Author(s):  
Vyacheslav L. Girko

Abstract The Circular Law under Lindeberg’s condition for the independent blocks of random matrices having zero expectations and double stochastic matrix of covariances of their array is proven.


2008 ◽  
Vol 10 (02) ◽  
pp. 261-307 ◽  
Author(s):  
TERENCE TAO ◽  
VAN VU

Let x be a complex random variable with mean zero and bounded variance σ2. Let Nn be a random matrix of order n with entries being i.i.d. copies of x. Let λ1, …, λn be the eigenvalues of [Formula: see text]. Define the empirical spectral distributionμn of Nn by the formula [Formula: see text] The following well-known conjecture has been open since the 1950's: Circular Law Conjecture: μn converges to the uniform distribution μ∞ over the unit disk as n tends to infinity. We prove this conjecture, with strong convergence, under the slightly stronger assumption that the (2 + η)th-moment of x is bounded, for any η > 0. Our method builds and improves upon earlier work of Girko, Bai, Götze–Tikhomirov, and Pan–Zhou, and also applies for sparse random matrices. The new key ingredient in the paper is a general result about the least singular value of random matrices, which was obtained using tools and ideas from additive combinatorics.


2015 ◽  
Vol 17 (04) ◽  
pp. 1550020 ◽  
Author(s):  
Radosław Adamczak ◽  
Djalil Chafaï

We explore the validity of the circular law for random matrices with non-i.i.d. entries. Let M be an n × n random real matrix obeying, as a real random vector, a log-concave isotropic (up to normalization) unconditional law, with mean squared norm equal to n. The entries are uncorrelated and obey a symmetric law of zero mean and variance 1/n. This model allows some dependence and non-equidistribution among the entries, while keeping the special case of i.i.d. standard Gaussian entries, known as the real Ginibre Ensemble. Our main result states that as the dimension n goes to infinity, the empirical spectral distribution of M tends to the uniform law on the unit disc of the complex plane.


2018 ◽  
Vol 07 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Kyle Luh

Let [Formula: see text] where [Formula: see text] are iid copies of a mean zero, variance one, subgaussian random variable. Let [Formula: see text] be an [Formula: see text] random matrix with entries that are iid copies of [Formula: see text]. We prove that there exists a [Formula: see text] such that the probability that [Formula: see text] has any real eigenvalues is less than [Formula: see text] where [Formula: see text] only depends on the subgaussian moment of [Formula: see text]. The bound is optimal up to the value of the constant [Formula: see text]. The principal component of the proof is an optimal tail bound on the least singular value of matrices of the form [Formula: see text] where [Formula: see text] is a deterministic complex matrix with the condition that [Formula: see text] for some constant [Formula: see text] depending on the subgaussian moment of [Formula: see text]. For this class of random variables, this result improves on the results of Pan–Zhou [Circular law, extreme singular values and potential theory, J. Multivariate Anal. 101(3) (2010) 645–656] and Rudelson–Vershynin [The Littlewood–Offord problem and invertibility of random matrices, Adv. Math. 218(2) (2008) 600–633]. In the proof of the tail bound, we develop an optimal small-ball probability bound for complex random variables that generalizes the Littlewood–Offord theory developed by Tao–Vu [From the Littlewood–Offord problem to the circular law: Universality of the spectral distribution of random matrices, Bull. Amer. Math. Soc.[Formula: see text]N.S.[Formula: see text] 46(3) (2009) 377–396; Inverse Littlewood–Offord theorems and the condition number of random discrete matrices, Ann. of Math.[Formula: see text] 169(2) (2009) 595–632] and Rudelson–Vershynin [The Littlewood–Offord problem and invertibility of random matrices, Adv. Math. 218(2) (2008) 600–633; Smallest singular value of a random rectangular matrix, Comm. Pure Appl. Math. 62(12) (2009) 1707–1739].


2010 ◽  
Vol 38 (4) ◽  
pp. 1444-1491 ◽  
Author(s):  
Friedrich Götze ◽  
Alexander Tikhomirov
Keyword(s):  

2021 ◽  
Vol 26 (none) ◽  
Author(s):  
Giorgio Cipolloni ◽  
László Erdős ◽  
Dominik Schröder
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document