strong convergence
Recently Published Documents


TOTAL DOCUMENTS

1818
(FIVE YEARS 370)

H-INDEX

64
(FIVE YEARS 6)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 123
Author(s):  
Vasile Berinde

For approximating the fixed points of enriched nonexpansive mappings in Hilbert spaces, we consider a modified Krasnosel’skiǐ–Mann algorithm for which we prove a strong convergence theorem. We also empirically compare the rate of convergence of the modified Krasnosel’skiǐ–Mann algorithm and of the simple Krasnosel’skiǐ fixed point algorithm. Based on the numerical experiments reported in the paper we conclude that, for the class of enriched nonexpansive mappings, it is more convenient to work with the simple Krasnosel’skiǐ fixed point algorithm than with the modified Krasnosel’skiǐ–Mann algorithm.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Monairah Alansari ◽  
Mohammad Farid ◽  
Rehan Ali

AbstractThe aim of this paper is to introduce and study an inertial hybrid iterative method for solving generalized equilibrium problems involving Bregman relatively nonexpansive mappings in Banach spaces. We study the strong convergence for the proposed algorithm. Finally, we list some consequences and computational example to emphasize the efficiency and relevancy of main result.


Author(s):  
Michelle Muniz ◽  
Matthias Ehrhardt ◽  
Michael Günther ◽  
Renate Winkler

AbstractIn this paper we present a general procedure for designing higher strong order methods for linear Itô stochastic differential equations on matrix Lie groups and illustrate this strategy with two novel schemes that have a strong convergence order of 1.5. Based on the Runge–Kutta–Munthe–Kaas (RKMK) method for ordinary differential equations on Lie groups, we present a stochastic version of this scheme and derive a condition such that the stochastic RKMK has the same strong convergence order as the underlying stochastic Runge–Kutta method. Further, we show how our higher order schemes can be applied in a mechanical engineering as well as in a financial mathematics setting.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Saud Fahad Aldosary ◽  
Watcharaporn Cholamjiak ◽  
Rehan Ali ◽  
Mohammad Farid

In this paper, we consider a generalized mixed variational-like inequality problem and prove a Minty-type lemma for its related auxiliary problems in a real Banach space. We prove the existence of a solution of these auxiliary problems and also prove some properties for the solution set of generalized mixed variational-like inequality problem. Furthermore, we introduce and study an inertial hybrid iterative method for solving the generalized mixed variational-like inequality problem involving Bregman relatively nonexpansive mapping in Banach space. We study the strong convergence for the proposed algorithm. Finally, we list some consequences and computational examples to emphasize the efficiency and relevancy of the main result.


2021 ◽  
Vol 10 (12) ◽  
pp. 3597-3623
Author(s):  
F. Akusah ◽  
A.A. Mebawondu ◽  
H.A. Abass ◽  
M.O. Aibinu ◽  
O.K. Narain

The research efforts of this paper is to present a new inertial relaxed Tseng extrapolation method with weaker conditions for approximating the solution of a variational inequality problem, where the underlying operator is only required to be pseudomonotone. The strongly pseudomonotonicity and inverse strongly monotonicity assumptions which the existing literature used are successfully weakened. The strong convergence of the proposed method to a minimum-norm solution of a variational inequality problem are established. Furthermore, we present an application and some numerical experiments to show the efficiency and applicability of our method in comparison with other methods in the literature.


Author(s):  
Zhongbing Xie ◽  
Gang Cai ◽  
Xiaoxiao Li ◽  
Qiao-Li Dong

Abstract The purpose of this paper is to study a new Tseng’s extragradient method with two different stepsize rules for solving pseudomonotone variational inequalities in real Hilbert spaces. We prove a strong convergence theorem of the proposed algorithm under some suitable conditions imposed on the parameters. Moreover, we also give some numerical experiments to demonstrate the performance of our algorithm.


Author(s):  
Lateef Olakunle Jolaoso ◽  
Yekini Shehu ◽  
Regina N. Nwokoye

Abstract The subgradient extragradient method with inertial extrapolation step x n + θ n (x n − x n−1) (also known as inertial subgradient extragradient method) has been studied extensively in the literature for solving variational inequalities and equilibrium problems. Most of the inertial subgradient extragradient methods in the literature for both variational inequalities and equilibrium problems have not considered the special case when the inertial factor θ n = 1. The convergence results have always been obtained when the inertial factor θ n is assumed 0 ≤ θ n < 1. This paper considers the relaxed inertial version of subgradient extragradient method for equilibrium problems with 0 ≤ θ n ≤ 1. We give both weak and strong convergence results using this inertial subgradient extragradient method and also give some numerical illustrations.


Author(s):  
Yanqing Yin

The aim of this paper is to investigate the spectral properties of sample covariance matrices under a more general population. We consider a class of matrices of the form [Formula: see text], where [Formula: see text] is a [Formula: see text] nonrandom matrix and [Formula: see text] is an [Formula: see text] matrix consisting of i.i.d standard complex entries. [Formula: see text] as [Formula: see text] while [Formula: see text] can be arbitrary but no smaller than [Formula: see text]. We first prove that under some mild assumptions, with probability 1, for all large [Formula: see text], there will be no eigenvalues in any closed interval contained in an open interval which is outside the supports of the limiting distributions for all sufficiently large [Formula: see text]. Then we get the strong convergence result for the extreme eigenvalues as an extension of Bai-Yin law.


Author(s):  
Chibueze C. Okeke ◽  
Lateef O. Jolaoso ◽  
Yekini Shehu

Abstract In this paper, we propose two inertial accelerated algorithms which do not require prior knowledge of operator norm for solving split feasibility problem with multiple output sets in real Hilbert spaces. We prove weak and strong convergence results for approximating the solution of the considered problem under certain mild conditions. We also give some numerical examples to demonstrate the performance and efficiency of our proposed algorithms over some existing related algorithms in the literature.


Sign in / Sign up

Export Citation Format

Share Document