Key words: Nonlinear Differential-Difference Equations; Exp-Function Method; N-Soliton Solutions

2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.

Author(s):  
Dr. K.V.Tamil Selvi , Et. al.

In this paper, analysis of nonlinear partial differential equations on velocities and temperature with convective boundary conditions are investigated. The governing partial differential equations are transformed into ordinary differential equations by applying similarity transformations. The system of nonlinear differential equations are solved using Homotopy Analysis Method (HAM). An analytical solution is obtained for the values of Magnetic parameter M2, Prandtl number Pr, Porosity parameter


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
S. S. Motsa

This paper presents a new application of the homotopy analysis method (HAM) for solving evolution equations described in terms of nonlinear partial differential equations (PDEs). The new approach, termed bivariate spectral homotopy analysis method (BISHAM), is based on the use of bivariate Lagrange interpolation in the so-called rule of solution expression of the HAM algorithm. The applicability of the new approach has been demonstrated by application on several examples of nonlinear evolution PDEs, namely, Fisher’s, Burgers-Fisher’s, Burger-Huxley’s, and Fitzhugh-Nagumo’s equations. Comparison with known exact results from literature has been used to confirm accuracy and effectiveness of the proposed method.


Author(s):  
Shaheed N. Huseen ◽  
Haider A. Mkharrib

In this paper, new powerful modification of homotopy analysis technique (NMHAM) was submitted to create an approximate solution of nonhomogeneous nonlinear ordinary and partial differential equations. The NMHAM is a combination of the new technique of homotopy analysis method(NHAM) [4] and the new technique of homotopy analysis method(nHAM) [7].Three illustrative examples are employed to illustrate the accuracy and computational proficiency of this approach. The outcomes uncover that the NMHAM is more accurate than the NHAM and nHAM.


Sign in / Sign up

Export Citation Format

Share Document