spectral homotopy analysis method
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 1)

Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 626 ◽  
Author(s):  
Asad Mahmood ◽  
Md Md Basir ◽  
Umair Ali ◽  
Mohd Mohd Kasihmuddin ◽  
Mohd. Mansor

This paper studies heat transfer in a two-dimensional magnetohydrodynamic viscous incompressible flow in convergent/divergent channels. The temperature profile was obtained numerically for both cases of convergent/divergent channels. It was found that the temperature profile increases with an increase in Reynold number, Prandtl number, Nusselt number and angle of the wall but decreases with an increase in Hartmann number. A relatively new numerical method called the spectral homotopy analysis method (SHAM) was used to solve the governing non-linear differential equations. The SHAM 3rd order results matched with the DTM and shooting, showing that SHAM is feasible as a technique to be used.


Author(s):  
B. O. Falodun ◽  
M. O. Oke ◽  
O. O. Fagbohun

In the present study, Magnetohydrodynamics (MHD) natural convection Casson fluid flow over a non-isothermal stretching sheet embedded in a porous medium is considered. The set of governing differential equations are simplified by similarity variables into coupled ordinary differential equations. The defined stream functions satisfied the continuity equation. Roseland approximation is utilized and the present study is therefore limited to an optically thick fluid. The transformed set of coupled nonlinear ordinary differential equations are then solved numerically via spectral homotopy analysis method (SHAM). Results revealed that the Magnetic parameter (M) reduces the velocity profile but produce a significant increase in the temperature profile. Also, it is observed that increasing the thermal radiation parameter increases the thermal condition of the fluid.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Sandile S. Motsa ◽  
Zodwa G. Makukula

A bivariate spectral homotopy analysis method (BSHAM) is extended to solutions of systems of nonlinear coupled partial differential equations (PDEs). The method has been used successfully to solve a nonlinear PDE and is now tested with systems. The method is based on a new idea of finding solutions that obey a rule of solution expression that is defined in terms of the bivariate Lagrange interpolation polynomials. The BSHAM is used to solve a system of coupled nonlinear partial differential equations modeling the unsteady mixed convection boundary layer flow, heat, and mass transfer due to a stretching surface in a rotating fluid, taking into consideration the effect of buoyancy forces. Convergence of the numerical solutions was monitored using the residual error of the PDEs. The effects of the flow parameters on the local skin-friction coefficient, the Nusselt number, and the Sherwood number were presented in graphs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
S. S. Motsa

This paper presents a new application of the homotopy analysis method (HAM) for solving evolution equations described in terms of nonlinear partial differential equations (PDEs). The new approach, termed bivariate spectral homotopy analysis method (BISHAM), is based on the use of bivariate Lagrange interpolation in the so-called rule of solution expression of the HAM algorithm. The applicability of the new approach has been demonstrated by application on several examples of nonlinear evolution PDEs, namely, Fisher’s, Burgers-Fisher’s, Burger-Huxley’s, and Fitzhugh-Nagumo’s equations. Comparison with known exact results from literature has been used to confirm accuracy and effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
S. S. Motsa ◽  
F. G. Awad ◽  
Z. G. Makukula ◽  
P. Sibanda

The spectral homotopy analysis method is extended to solutions of systems of nonlinear partial differential equations. The SHAM has previously been successfully used to find solutions of nonlinear ordinary differential equations. We solve the nonlinear system of partial differential equations that model the unsteady nonlinear convective flow caused by an impulsively stretching sheet. The numerical results generated using the spectral homotopy analysis method were compared with those found using the spectral quasilinearisation method (SQLM) and the two results were in good agreement.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
S. S. Motsa

The purpose of this study is to identify the auxiliary linear operator that gives the best convergence and accuracy in the implementation of the spectral homotopy analysis method (SHAM) in the solution of nonlinear ordinary differential equations. The auxiliary linear operator is an essential element of the homotopy analysis method (HAM) algorithm that strongly influences the convergence of the method. In this work we introduce new procedures of defining the auxiliary linear operators and compare solutions generated using the new linear operators with solutions obtained using well-known linear operators. The applicability and validity of the proposed linear operators is tested on four highly nonlinear ordinary differential equations with fluid mechanics applications that have recently been reported in the literature. The results from the study reveal that the new linear operators give better results than the previously used linear operators. The identification of the optimal linear operator will direct future research on further applications of HAM-based methods in solving complicated nonlinear differential equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
S. S. Motsa

This work presents a new approach to the application of the spectral homotopy analysis method (SHAM) in solving non-linear partial differential equations (PDEs). The proposed approach is based on an innovative idea of seeking solutions that obey a rule of solution expression that is defined in terms of bivariate Lagrange interpolation polynomials. The applicability and effectiveness of the expanded SHAM approach are tested on a non-linear PDE that models the problem of unsteady boundary layer flow caused by an impulsively stretching plate. Numerical simulations are conducted to generate results for the important flow properties such as the local skin friction. The accuracy of the present results is validated against existing results from the literature and against results generated using the Keller-box method. The preliminary results from the proposed study indicate that the present method is more accurate and computationally efficient than more traditional methods used for solving PDEs that describe nonsimilar boundary layer flow.


2014 ◽  
Vol 22 (4) ◽  
Author(s):  
S. S. Motsa ◽  
H. Saberi Nik ◽  
S. Effati ◽  
J. Saberi-Nadjafi

Abstract- In this paper, a novel modification of the spectral-homotopy analysis method (SHAM) technique for solving highly nonlinear initial value problems that model systems with chaotic and hyper-chaotic behaviour is presented. The proposed method is based on implementing the SHAM on a sequence of multiple intervals thereby increasing it’s radius of convergence to yield highly accuratemethod which is referred to as the piece-wise spectral homotopy analysis method (PSHAM). We investigate the application of the PSHAM to the L¨u system [20] which is well known to display periodic, chaotic and hyper-chaotic behaviour under carefully selected values of it’s governing parameters. Existence and uniqueness of solution of SHAM that give a guarantee of convergence of SHAM, has been discussed in details. Comparisons are made between PSHAMgenerated results and results from literature and Runge-Kutta generated results and good agreement is observed.


Sign in / Sign up

Export Citation Format

Share Document