convective boundary
Recently Published Documents


TOTAL DOCUMENTS

1903
(FIVE YEARS 415)

H-INDEX

73
(FIVE YEARS 10)

Author(s):  
Abiodun O. Ajibade ◽  
Tafida M. Kabir

Abstract The present article explores the effect of viscous dissipation on steady natural convection Couette flow subject to convective boundary condition. Due to the nonlinearity and coupling of the governing equations in the present situation, the homotopy perturbation method was employed to obtain the solutions of the energy and momentum equations. The impacts of the controlling parameters were investigated and discussed graphically. In the course of investigation, it was found that fluid temperature increases with an increase in viscous dissipation while the reverse trend was observed in fluid velocity. However, it was also discovered that heat generation leads to a decrease in the rate of heat transfer on the heated plate and it increases on the cold plate. Finally, it was concluded that the velocity boundary layer thickness increases with an increase in Biot number.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Nazia Shahmir ◽  
Hassan Ali S. Ghazwani ◽  
Kottakkaran Sooppy Nisar ◽  
Faizah M. Alharbi ◽  
...  

AbstractSolar thermal systems have low efficiency due to the working fluid's weak thermophysical characteristics. Thermo-physical characteristics of base fluid depend on particle concentration, diameter, and shapes. To assess a nanofluid's thermal performance in a solar collector, it is important to first understand the thermophysical changes that occur when nanoparticles are introduced to the base fluid. The aim of this study is, therefore, to analyze the hydrodynamic and heat characteristics of two different water-based hybrid nanofluids (used as a solar energy absorber) with varied particle shapes in a porous medium. As the heat transfer surface is exposed to the surrounding environment, the convective boundary condition is employed. Additionally, the flow of nanoliquid between two plates (in parallel) is observed influenced by velocity slip, non-uniform heat source-sink, linear thermal radiation. To make two targeted hybrid nanofluids, graphene is added as a cylindrical particle to water to make a nanofluid, and then silver is added as a platelet particle to the graphene/water nanofluid. For the second hybrid nanofluid, CuO spherical shape particles are introduced to the graphene/water nanofluid. The entropy of the system is also assessed. The Tiwari-Das nanofluid model is used. The translated mathematical formulations are then solved numerically. The physical and graphical behavior of significant parameters is studied.


Author(s):  
Ricardo C. Muñoz ◽  
C. David Whiteman ◽  
René D. Garreaud ◽  
José A. Rutllant ◽  
Jacqueline Hidalgo

AbstractThe World Meteorological Organization Aircraft Meteorological Data Relay (AMDAR) programme refers to meteorological data gathered by commercial aircraft and made available to weather services. It has become a major source of upper-air observations whose assimilation into global models has greatly improved their performance. Near busy airports, AMDAR data generate semi-continuous vertical profiles of temperature and winds, which have been utilized to produce climatologies of atmospheric-boundary-layer (ABL) heights and general characterizations of specific cases. We analyze 2017–2019 AMDAR data for Santiago airport, located in the centre of a $$40\times 100$$ 40 × 100  km$$^2$$ 2 subtropical semi-arid valley in central Chile, at the foothills of the Andes. Profiles derived from AMDAR data are characterized and validated against occasional radiosondes launched in the valley and compared with routine operational radiosondes and with reanalysis data. The cold-season climatology of AMDAR temperatures reveals a deep nocturnal inversion reaching up to 700 m above ground level (a.g.l.) and daytime warming extending up to 1000 m a.g.l. Convective-boundary-layer (CBL) heights are estimated based on AMDAR profiles and the daytime heat budget of the CBL is assessed. The CBL warming variability is well explained by the surface sensible heat flux estimated with sonic anemometer measurements at one site, provided advection of the cool coastal ABL existing to the west is included. However, the CBL warming accounts for just half of the mean daytime warming of the lower troposphere, suggesting that rather intense climatological diurnal subsidence affects the dynamics of the daytime valley ABL. Possible sources of this subsidence are discussed.


Abstract We consider the closure problem of representing the higher order moments (HOMs) in terms of lower-order moments, a central feature in turbulence modelling based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our focus is on models suited for the description of asymmetric, non-local and semi-organized turbulence in the dry atmospheric convective boundary layer (CBL). We establish a multivariate probability density function (PDF) describing populations of plumes which are embedded in a sea of weaker randomly spaced eddies, and apply an assumed Delta-PDF approximation. The main content of this approach consists of capturing the bulk properties of the PDF. We solve the closure problem analytically for all relevant higher order moments (HOMs) involving velocity components and temperature and establish a hierarchy of new non-Gaussian turbulence closure models of different content and complexity ranging from analytical to semi-analytical. All HOMs in the hierarchy have a universal and simple functional form. They refine the widely used Millionshchikov closure hypothesis and generalize the famous quadratic skewness-kurtosis relationship to higher-order. We examine the performance of the new closures by comparison with measurement, LES and DNS data and derive empirical constants for semi-analytical models, which are best for practical applications. We show that the new models have a good skill in predicting the HOMs for atmospheric CBL. Our closures can be implemented in second-, third- and fourth-order RANS turbulence closure models of bi-, tri-and four-variate levels of complexity. Finally, several possible generalizations of our approach are discussed.


Author(s):  
Bayo Johnson Akinbo ◽  
Bakai Ishola Olajuwon

Heat generation effect in a steady two-dimensional magnetohydrodynamics (MHD) flow over a moving vertical plate with a medium porosity has been studied. By similarity transformation variables, the coupled non-linear ordinary differential equations describing the model are obtained. The resulting equation is then solved, using Galerkin Weighted Residual Method (GWRM), where the effect of heat generation, Magnetic Parameter as well as other physical parameters encountered were examined and discussed. Some of the major findings were that increase in heat generation and convective heat parameter enhances the plate surface temperature as well as temperature field which allows the thermal effect to penetrate deeper into the quiescent fluid.


Sign in / Sign up

Export Citation Format

Share Document