scholarly journals Preconditioning of Low-Frequency Repetitive Transcranial Magnetic Stimulation with Transcranial Direct Current Stimulation: Evidence for Homeostatic Plasticity in the Human Motor Cortex

2004 ◽  
Vol 24 (13) ◽  
pp. 3379-3385 ◽  
Author(s):  
H. R. Siebner
2009 ◽  
Vol 106 (5) ◽  
pp. 1593-1603 ◽  
Author(s):  
Gabrielle Todd ◽  
Nigel C. Rogasch ◽  
Stanley C. Flavel ◽  
Michael C. Ridding

Repetitive transcranial magnetic stimulation (rTMS) can induce short-term reorganization of human motor cortex. Here, we investigated the effect of rTMS during relaxation and weak voluntary muscle contraction on motor cortex excitability and hand function. Subjects ( n = 60) participated in one of four studies. Single transcranial magnetic stimuli were delivered over the motor area of the first dorsal interosseus for measurement of motor evoked potential (MEP) size before and after real or sham rTMS delivered at an intensity of 80% of active motor threshold. rTMS involved trains of stimuli applied at 6 Hz for 5 s and repeated every 30 s for 10 min. Resting MEP size was suppressed for 15 min after rTMS during relaxation. However, MEP suppression was abolished when additional brief voluntary contractions were performed before and after rTMS ( study 1). Resting MEP size was suppressed for 30 min after rTMS during weak voluntary contraction. MEP suppression was present even though voluntary contractions were performed before and after rTMS ( study 2). The MEP suppression most likely reflects a decrease in motor cortical excitability. Surprisingly, rTMS during voluntary contraction did not alter maximal finger tapping speed or performance on a grooved pegboard test, object grip and lift task ( study 3), and visuomotor tracking task ( study 4). These studies document the complex relationship between voluntary movement and rTMS-induced plasticity in motor cortex. This work has implications for the optimization of rTMS parameters for improved efficacy and potential therapeutic applications.


2013 ◽  
Vol 109 (12) ◽  
pp. 3060-3066 ◽  
Author(s):  
Martin Sommer ◽  
Milena Rummel ◽  
Christoph Norden ◽  
Holger Rothkegel ◽  
Nicolas Lang ◽  
...  

Our knowledge about the mechanisms of human motor cortex facilitation induced by repetitive transcranial magnetic stimulation (rTMS) is still incomplete. Here we used pharmacological conditioning with carbamazepine, dextrometorphan, lorazepam, and placebo to elucidate the type of plasticity underlying this facilitation, and to probe if mechanisms reminiscent of long-term potentiation are involved. Over the primary motor cortex of 10 healthy subjects, we applied biphasic rTMS pulses of effective posterior current direction in the brain. We used six blocks of 200 pulses at 5-Hz frequency and 90% active motor threshold intensity and controlled for corticospinal excitability changes using motor-evoked potential (MEP) amplitudes and latencies elicited by suprathreshold pulses before, in between, and after rTMS. Target muscle was the dominant abductor digiti minimi muscle; we coregistered the dominant extensor carpi radialis muscle. We found a lasting facilitation induced by this type of rTMS. The GABAergic medication lorazepam and to a lesser extent the ion channel blocker carbamazepine reduced the MEP facilitation after biphasic effective posteriorly oriented rTMS, whereas the N-methyl-d-aspartate receptor-antagonist dextrometorphan had no effect. Our main conclusion is that the mechanism of the facilitation induced by biphasic effective posterior rTMS is more likely posttetanic potentiation than long-term potentiation. Additional findings were prolonged MEP latency under carbamazepine, consistent with sodium channel blockade, and larger MEP amplitudes from extensor carpi radialis under lorazepam, suggesting GABAergic involvement in the center-surround balance of excitability.


Sign in / Sign up

Export Citation Format

Share Document