The approach of the joint probability distribution functions: the SIR-MIR, SAD-MAD and SIRAS-MIRAS, cases

Author(s):  
C. Giacovazzo ◽  
M. Ladisa ◽  
D. Siliqi

AbstractThe method of the joint probability distribution functions has been recently applied to SIR-MIR, SAD-MAD and SIRAS-MIRAS cases. The capacity of the method to treat various forms of errors (i.e., errors in measurements, possible lack of isomorphism, errors in a substructure model when a model is

Author(s):  
Carmelo Giacovazzo

The title of this chapter may seem a little strange; it relates Fourier syntheses, an algebraic method for calculating electron densities, to the joint probability distribution functions of structure factors, which are devoted to the probabilistic estimate of s.i.s and s.s.s. We will see that the two topics are strictly related, and that optimization of the Fourier syntheses requires previous knowledge and the use of joint probability distributions. The distributions used in Chapters 4 to 6 are able to estimate s.i. or s.s. by exploiting the information contained in the experimental diffraction moduli of the target structure (the structure one wants to phase). An important tool for such distributions are the theories of neighbourhoods and of representations, which allow us to arrange, for each invariant or seminvariant Φ, the set of amplitudes in a sequence of shells, each contained within the subsequent shell, with the property that any s.i. or s.s. may be estimated via the magnitudes constituting any shell. The resulting conditional distributions were of the type, . . . P(Φ| {R}), (7.1) . . . where {R} represents the chosen phasing shell for the observed magnitudes. The more information contained within the set of observed moduli {R}, the better will be the Φ estimate. By definition, conditional distributions (7.1) cannot change during the phasing process because prior information (i.e. the observed moduli) does not change; equation (7.1) maintains the same identical algebraic form. However, during any phasing process, various model structures progressively become available, with different degrees of correlation with the target structure. Such models are a source of supplementary information (e.g. the current model phases) which, in principle, can be exploited during the phasing procedure. If this observation is accepted, the method of joint probability distribution, as described so far, should be suitably modified. In a symbolic way, we should look for deriving conditional distributions . . . P (Φ| {R}, {Rp}) , (7.2) . . . rather than (7.1), where {Rp} represents a suitable subset of the amplitudes of the model structure factors. Such an approach modifies the traditional phasing strategy described in the preceding chapters; indeed, the set {Rp} will change during the phasing process in conjunction with the model changes, which will continuously modify the probabilities (7.2).


2008 ◽  
Vol 42 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Angela Altomare ◽  
Benny Danilo Belviso ◽  
Maria Cristina Burla ◽  
Gaetano Campi ◽  
Corrado Cuocci ◽  
...  

A new joint probability distribution function method is described to find the anomalous scatterer substructure from powder data. The method requires two wavelengths; the conclusive formulas provide estimates of the substructure structure factor moduli, from which the anomalous scatterer positions can be found by Patterson or direct methods. The theory has been preliminarily applied to two compounds, the first having Pt and the second having Fe as anomalous scatterer. Both substructures were correctly identified.


2018 ◽  
Vol 12 (1) ◽  
pp. 54-66
Author(s):  
Waleed Abdel Kareem ◽  
Mahmoud Abdel Aty ◽  
Zafer M. Asker

Background: Turbulent flow is characterized by vortices with different scales. Extraction of various scales and filtering the turbulent field into coherent and incoherent parts are important processes that improve our understanding of turbulent characteristics. Objective: Joint probability distribution functions (JPDFs) for the filtered velocity gradient invariants are extensively studied for different scales as well as for the coherent and incoherent parts of each scale. Methods: The Fourier decomposition and the anisotropic diffusion model are used in the investigation. The extraction process is performed by employing the Fourier decomposition at different cutoff wavenumbers for the velocity field and three distinct scales (large, medium and fine scale) are identified. The velocity gradient invariants such as the second invariant Q and the third invariant R for the different scales are extracted. Then other important invariants such as the rate of rotation tensor QW and the rate of deformation QS are also identified for each scale. The anisotropic diffusion model is used to extract the coherent and incoherent parts of each invariant at each scale. Then the JPDFs of the coherent and incoherent invariants are compared. The scale decomposition and the filtering process are applied for turbulent flow fields that are simulated using the lattice Boltzmann method with resolution of 1283. Results: Results show that the (R-Q) space has a universal topological pear-like shape for the different scales as well as their coherent field. However, the (R-Q)-space for the incoherent fields are found different and no general shape can be observed. The (Qw-QS)-space results show self-similar shapes for coherent fields and for the incoherent fields no specific shape can be observed since the noise distributed as separated points everywhere. Conclusion: Two different methods for extraction and filtering of forced isotropic turbulence and the JPDFs of the velocity gradient invariants are studied. Some universal characteristics for the coherent parts were found. However, for the incoherent parts, no universal JPDFs were found.


Sign in / Sign up

Export Citation Format

Share Document