Joint probability distribution functions when a model is available: Fourier syntheses

Author(s):  
Carmelo Giacovazzo

The title of this chapter may seem a little strange; it relates Fourier syntheses, an algebraic method for calculating electron densities, to the joint probability distribution functions of structure factors, which are devoted to the probabilistic estimate of s.i.s and s.s.s. We will see that the two topics are strictly related, and that optimization of the Fourier syntheses requires previous knowledge and the use of joint probability distributions. The distributions used in Chapters 4 to 6 are able to estimate s.i. or s.s. by exploiting the information contained in the experimental diffraction moduli of the target structure (the structure one wants to phase). An important tool for such distributions are the theories of neighbourhoods and of representations, which allow us to arrange, for each invariant or seminvariant Φ, the set of amplitudes in a sequence of shells, each contained within the subsequent shell, with the property that any s.i. or s.s. may be estimated via the magnitudes constituting any shell. The resulting conditional distributions were of the type, . . . P(Φ| {R}), (7.1) . . . where {R} represents the chosen phasing shell for the observed magnitudes. The more information contained within the set of observed moduli {R}, the better will be the Φ estimate. By definition, conditional distributions (7.1) cannot change during the phasing process because prior information (i.e. the observed moduli) does not change; equation (7.1) maintains the same identical algebraic form. However, during any phasing process, various model structures progressively become available, with different degrees of correlation with the target structure. Such models are a source of supplementary information (e.g. the current model phases) which, in principle, can be exploited during the phasing procedure. If this observation is accepted, the method of joint probability distribution, as described so far, should be suitably modified. In a symbolic way, we should look for deriving conditional distributions . . . P (Φ| {R}, {Rp}) , (7.2) . . . rather than (7.1), where {Rp} represents a suitable subset of the amplitudes of the model structure factors. Such an approach modifies the traditional phasing strategy described in the preceding chapters; indeed, the set {Rp} will change during the phasing process in conjunction with the model changes, which will continuously modify the probabilities (7.2).

1999 ◽  
Vol 55 (3) ◽  
pp. 512-524
Author(s):  
Carmelo Giacovazzo ◽  
Dritan Siliqi ◽  
Cristina Fernández-Castaño

The method of the joint probability distribution functions of structure factors has been extended to reflections with rational indices. The most general case, space group P1, has been considered. The positional parameters are the primitive random variables of our probabilistic approach, while the reflection indices are kept fixed. Quite general joint probability distributions have been considered from which conditional distributions have been derived: these proved applicable to the accurate estimation of the real and imaginary parts of a structure factor, given prior information on other structure factors. The method is also discussed in relation to the Hilbert-transform techniques.


Author(s):  
C. Giacovazzo ◽  
M. Ladisa ◽  
D. Siliqi

AbstractThe method of the joint probability distribution functions has been recently applied to SIR-MIR, SAD-MAD and SIRAS-MIRAS cases. The capacity of the method to treat various forms of errors (i.e., errors in measurements, possible lack of isomorphism, errors in a substructure model when a model is


2008 ◽  
Vol 42 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Angela Altomare ◽  
Benny Danilo Belviso ◽  
Maria Cristina Burla ◽  
Gaetano Campi ◽  
Corrado Cuocci ◽  
...  

A new joint probability distribution function method is described to find the anomalous scatterer substructure from powder data. The method requires two wavelengths; the conclusive formulas provide estimates of the substructure structure factor moduli, from which the anomalous scatterer positions can be found by Patterson or direct methods. The theory has been preliminarily applied to two compounds, the first having Pt and the second having Fe as anomalous scatterer. Both substructures were correctly identified.


1999 ◽  
Vol 55 (2) ◽  
pp. 322-331 ◽  
Author(s):  
Carmelo Giacovazzo ◽  
Dritan Siliqi ◽  
Angela Altomare ◽  
Giovanni Luca Cascarano ◽  
Rosanna Rizzi ◽  
...  

The joint probability distribution function method has been developed in P1¯ for reflections with rational indices. The positional atomic parameters are considered to be the primitive random variables, uniformly distributed in the interval (0, 1), while the reflection indices are kept fixed. Owing to the rationality of the indices, distributions like P(F p 1 , F p 2 ) are found to be useful for phasing purposes, where p 1 and p 2 are any pair of vectorial indices. A variety of conditional distributions like P(|F p 1 | | |F p 2 |), P(|F p 1 | |F p 2 ), P(\varphi_{{\bf p}_1}|\,|F_{{\bf p}_1}|, F_{{\bf p}_2}) are derived, which are able to estimate the modulus and phase of F p 1 given the modulus and/or phase of F p 2 . The method has been generalized to handle the joint probability distribution of any set of structure factors, i.e. the distributions P(F 1, F 2,…, F n+1), P(|F 1| |F 2,…, F n+1) and P(\varphi1| |F|1, F 2,…, F_{n+1}) have been obtained. Some practical tests prove the efficiency of the method.


2018 ◽  
Vol 12 (1) ◽  
pp. 54-66
Author(s):  
Waleed Abdel Kareem ◽  
Mahmoud Abdel Aty ◽  
Zafer M. Asker

Background: Turbulent flow is characterized by vortices with different scales. Extraction of various scales and filtering the turbulent field into coherent and incoherent parts are important processes that improve our understanding of turbulent characteristics. Objective: Joint probability distribution functions (JPDFs) for the filtered velocity gradient invariants are extensively studied for different scales as well as for the coherent and incoherent parts of each scale. Methods: The Fourier decomposition and the anisotropic diffusion model are used in the investigation. The extraction process is performed by employing the Fourier decomposition at different cutoff wavenumbers for the velocity field and three distinct scales (large, medium and fine scale) are identified. The velocity gradient invariants such as the second invariant Q and the third invariant R for the different scales are extracted. Then other important invariants such as the rate of rotation tensor QW and the rate of deformation QS are also identified for each scale. The anisotropic diffusion model is used to extract the coherent and incoherent parts of each invariant at each scale. Then the JPDFs of the coherent and incoherent invariants are compared. The scale decomposition and the filtering process are applied for turbulent flow fields that are simulated using the lattice Boltzmann method with resolution of 1283. Results: Results show that the (R-Q) space has a universal topological pear-like shape for the different scales as well as their coherent field. However, the (R-Q)-space for the incoherent fields are found different and no general shape can be observed. The (Qw-QS)-space results show self-similar shapes for coherent fields and for the incoherent fields no specific shape can be observed since the noise distributed as separated points everywhere. Conclusion: Two different methods for extraction and filtering of forced isotropic turbulence and the JPDFs of the velocity gradient invariants are studied. Some universal characteristics for the coherent parts were found. However, for the incoherent parts, no universal JPDFs were found.


2019 ◽  
Vol 75 (1) ◽  
pp. 142-157 ◽  
Author(s):  
Carmelo Giacovazzo

The standard method of joint probability distribution functions, so crucial for the development of direct methods, has been revisited and updated. It consists of three steps: identification of the reflections which may contribute to the estimation of a given structure invariant or seminvariant, calculation of the corresponding joint probability distribution, and derivation of the conditional distribution of the invariant or seminvariant phase given the values of some diffracted amplitudes. In this article the conditional distributions are derived directly without passing through the second step. A good feature of direct methods is that they may work in the absence of any prior information: that is also their weakness. Different types of prior information have been taken into consideration: interatomic distances, interatomic vectors, Patterson peaks, structural model. The method of directly deriving the conditional distributions has been applied to those cases. Some new formulas have been obtained estimating two-, three- and four-phase invariants. Special attention has been dedicated to the practical aspects of the new formulas, in order to simplify their possible use in direct phasing procedures.


Sign in / Sign up

Export Citation Format

Share Document