velocity gradient
Recently Published Documents


TOTAL DOCUMENTS

900
(FIVE YEARS 126)

H-INDEX

55
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Gede H Cahyana

Helical or spiral coiled flocculator have not been applied in drinking water treatment yet in Indonesia. There were only a few articles discussed it with different themes like hydrodynamic, floc characteristic, and performance. This study was done to know the efficiency (performance) of helical flocculator with parameters velocity gradient, pipe and helical diameter, flowrate, detention time, coagulant dose. The study was divided into two steps: Jar test to determine the optimum dose of coagulant and flocculation experiments to evaluate the helical flocculator efficiency. Efficiencies were in the range of medium to high. On flowrate 13 ml/second was obtained good results for two pipe sizes but different in helical diameters. In 0.5 inch pipe with 0.8 m helical diameter the turbidity reduction efficiencies were 72.4% and 73.9% and sediment volume were 18.3 ml and 20.0 ml. In 0.625 inch pipe with 0.4 m helical diameter the turbidity reduction efficiencies were 76.7% and 78.5% and sediment volume were 14.3 ml and 19.7 ml. The optimum velocity gradient about 64.9–69.6 persecond and detention time about 438–649 seconds. The results showed that helical flocculator was effective for floc formation. Flowrate, pipe diameter, helical diameter were three key parameters to perform helical flocculator.


Author(s):  
Li Ding ◽  
Jianwei Jiang ◽  
Shuyou Wang ◽  
Liuqi Ji

To explain the axial fracture phenomenon of Explosively Formed Projectile (EFP), the fracture mechanism of long rod EFP during the forming phase is analyzed by the stress wave theory. When the velocity gradient [Formula: see text] between the head and tail parts exceeds the critical value [Formula: see text], the EFP would fracture in the axial direction. Based on the Johnson–Cook constitutive model parameters and the special conditions in the forming phase of EFP, the critical velocity gradient [Formula: see text] can be determined by theoretical calculation and then validated by experimental results for both copper and tantalum EFPs. The experimental results for EFP’s fracture agree well with the prediction of the theoretical analysis. The theoretical analysis method can be applied as an important measure to determine the critical velocity gradient and predict the fracture of long rod EFP, providing reference for the application of new kinds of high density materials in the EFP research area.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7560
Author(s):  
Dorota Kalisz ◽  
Paweł L. Żak ◽  
Olena Dan

This paper presents simulation results of the interaction of TiC nanoparticle in liquid aluminum. The behavior of the TiC particle in the frontal interaction region stems from the operation of a system of such forces as gravity, viscous flow drag force, and Saffman force. The difference in density between the TiC and the aluminum matrix makes the particle fall, regardless of the radius dimension; while the Saffman force—which accounts for the local velocity gradient of the liquid aluminum—causes that particles with the smallest radii considered in the calculations 6.4 × 10−8 m; 7 × 10−8 m; 7.75 × 10−8 m; 9.85 × 10−8 m are repelled from the solidification front and the particles with 15.03 × 10−8 m are attracted to it. The viscosity growth in the course of casting caused by the lowering temperature reduces this effect, though the trend is maintained. The degree to which the particle is attracted to the front clearly depends on the velocity gradient of the liquid phase. For a very small gradient of 0.00001 m/s, the particle is at its closest position relative to the front.


2021 ◽  
Vol 923 (2) ◽  
pp. 251
Author(s):  
Yoshiaki Hagiwara ◽  
Shinji Horiuchi ◽  
Masatoshi Imanishi ◽  
Philip G. Edwards

Abstract We present the results of second-epoch ALMA observations of 321 GHz H2O emission toward two nearby active galactic nuclei, NGC 4945 and the Circinus galaxy, together with Tidbinbilla 70 m monitoring of their 22 GHz H2O masers. The two-epoch ALMA observations show that the strengths of the 321 GHz emission are variable by a factor of at least a few, confirming a maser origin. In the second epoch, 321 GHz maser emission from NGC 4945 was not detected, while for the Circinus galaxy the flux density significantly increased and the velocity gradient and dispersion have been measured. With the velocity gradient spanning ∼110 km s−1, we calculate the disk radius to be ∼28 pc, assuming disk rotation around the nucleus. We also estimate the dynamical mass within the central 28 pc to be 4.3 × 108 M ☉, which is significantly larger than the larger-scale dynamical mass, suggesting the velocity gradient does not trace circular motions on that scale. The overall direction of the velocity gradient and velocity range of the blueshifted features are largely consistent with those of the 22 GHz maser emission in a thin disk with smaller radii of 0.1–0.4 pc and molecular outflows within ∼1 pc from the central engine of the galaxy, implying that the 321 GHz masers could trace part of the circumnuclear disk or the nuclear outflows.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012012
Author(s):  
A V Nesterenok

Abstract The collisional excitation of methanol molecule in non-dissociative magnetohydro-dynamic shock waves is considered. All essential chemical processes that determine methanol abundance in the gas are taken into account in the shock model. The large velocity gradient approximation is used in the calculations of energy level populations of the molecule. We calculate the optical depth for inverted methanol transitions, and present the list of candidates for Class I methanol masers that have collisional pumping mechanism.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052066
Author(s):  
Viktor Sizykh ◽  
Aleksei Daneev ◽  
Roman Oboltin

Abstract The article proposes a new approach to combined parametric synthesis (synthesis in real or accelerated time) of neuroregulators of multidimensional and multi-connected physical systems and technological processes based on the application of the velocity gradient method in differential form and the theory of sliding modes.


Author(s):  
Xinran Zhang ◽  
Jiaqi Zhu ◽  
Zhenxing Li ◽  
Junyi Li ◽  
Pengfei Ren

Abstract Coagulation and sedimentation process is one of the most popular processes in drinking water treatment. Hydrodynamic breakage has a significant impact on the evolution of floc characteristic and the efficiency of turbidity removal. In this work, the effects of hydrodynamic breakage on floc size, fractal dimension, and floc morphology were investigated with an in-situ recognition system. The experiments were conducted in a continuous flocculation and sedimentation reactor equipped with perforated plates to provide different hydrodynamic breakage conditions. The experimental results indicated that the hydrodynamic conditions significantly influenced the floc destabilization and restructuring processes. A low hydrodynamic shear forces provided by P1 led to the increase of both bigger sized flocs but accompanied with small particles (0–10 μm). Excessive velocity gradient provided by P3 produced smaller and looser flocs. An appropriate velocity gradient (i.e., the flow velocity through the perforated plate P2 at 18.9 × 10−3m s−1) was conducive for the formation of larger and more compact structures, with higher average floc size and fractal dimension. This flocculation condition in turn resulted in effective improvements in the turbidity removal efficiency. Floc evolution models were described based on the mechanism of the breakage and restructuring process.


2021 ◽  
Author(s):  
Diana Broboana ◽  
Ana-Maria Bratu ◽  
Istvan Magos ◽  
Claudiu Patrascu ◽  
Corneliu Balan

Abstract The dripping regime in the vicinity of droplet breakup is analyzed concerning the evolution of the filament’s neck and its corresponding thinning velocity. Three flow regimes are observed as the relative time decreases: (i) a monotonous increase of the neck’s thinning velocity, where inertia and capillarity are balanced, (ii) a transition region characterized by the equilibrium between inertia, capillarity, and viscous forces, where the thinning velocity varies non-monotonically with the relative time and (iii) the final pinch-off regime, where velocity decreases or oscillates around a constant value. Based on the correlation between experimental data and numerics, the distribution of the zeta - coefficient (defined as the non-dimensional second invariant of the velocity gradient) on the droplet’s profile is used to quantify the ratio between elongation and rotation of the fluid at the interface. The regions dominated by extension, where pure elongation is located at zeta = 1 , are determined. One main result of this study is the confirmation that distribution of the zeta - coefficient is a relevant parameter to analyze and to quantify the breakup process. This result has the potential of developing novel techniques and more precise procedures in determining the interfacial rheology of viscous and complex fluids.


Sign in / Sign up

Export Citation Format

Share Document