Data Preprocessing and Transformation Technique to Generate Pattern from the Web Log

2012 ◽  
Vol 241-244 ◽  
pp. 2779-2782
Author(s):  
Heng Yao Tang ◽  
Xiao Yan Zhan

On the problems existing in the realization of current accessibility website, we design a web designing architecture, using the web log mining technique to extract user interests and access priority sequence and adopting the dynamic web page information to fill the web page commonly used structure, realize the intelligent , personalized accessibility.


2014 ◽  
Vol 687-691 ◽  
pp. 1592-1595
Author(s):  
Yun Peng Duan ◽  
Chun Xi Zhao ◽  
Ying Shi

With the widely application of the WWW and the emergence of Web technology, make the research of data mining has entered a new stage. Web log mining is based on the idea of data mining to analyze the server log processing. Paper aimed at the early stage of the data mining is put forward based on log data preprocessing methods, the purpose is to divide server logs into multiple unique user access sequence at a time, and to give a good algorithm.


Author(s):  
Muhammad Zia Aftab Khan ◽  
Jihyun Park

The purpose of this paper is to develop WebSecuDMiner algorithm to discover unusual web access patterns based on analysing the potential rules hidden in web server log and user navigation history. Design/methodology/approach: WebSecuDMiner uses equivalence class transformation (ECLAT) algorithm to extract user access patterns from the web log data, which will be used to identify the user access behaviours pattern and detect unusual one. Data extracted from the web serve log and user browsing behaviour is exploited to retrieve the web access pattern that is produced by the same user. Findings: WebSecuDMiner is used to detect whether any unauthorized access have been posed and take appropriate decisions regarding the review of the original rights of suspicious user. Research limitations/implications: The present work uses the database which is extracted from web serve log file and user browsing behaviour. Although the page is viewed by the user, the visit is not recorded in the server log file, since it can be access from the browser's cache.


Big Data ◽  
2016 ◽  
pp. 899-928
Author(s):  
Abubakr Gafar Abdalla ◽  
Tarig Mohamed Ahmed ◽  
Mohamed Elhassan Seliaman

The web is a rich data mining source which is dynamic and fast growing, providing great opportunities which are often not exploited. Web data represent a real challenge to traditional data mining techniques due to its huge amount and the unstructured nature. Web logs contain information about the interactions between visitors and the website. Analyzing these logs provides insights into visitors' behavior, usage patterns, and trends. Web usage mining, also known as web log mining, is the process of applying data mining techniques to discover useful information hidden in web server's logs. Web logs are primarily used by Web administrators to know how much traffic they get and to detect broken links and other types of errors. Web usage mining extracts useful information that can be beneficial to a number of application areas such as: web personalization, website restructuring, system performance improvement, and business intelligence. The Web usage mining process involves three main phases: pre-processing, pattern discovery, and pattern analysis. Various preprocessing techniques have been proposed to extract information from log files and group primitive data items into meaningful, lighter level abstractions that are suitable for mining, usually in forms of visitors' sessions. Major data mining techniques in web usage mining pattern discovery are: clustering, association analysis, classification, and sequential patterns discovery. This chapter discusses the process of web usage mining, its procedure, methods, and patterns discovery techniques. The chapter also presents a practical example using real web log data.


Author(s):  
Xueping Li

The Internet has become a popular medium to disseminate information and a new platform to conduct electronic business (e-business) and electronic commerce (e-commerce). With the rapid growth of the WWW and the intensified competition among the businesses, effective web presence is critical to attract potential customers and retain current customer thus the success of the business. This poses a significant challenge because the web is inherently dynamic and web data is more sophisticated, diverse, and dynamic than traditional well-structured data. Web mining is one method to gain insights into how to evolve the web presence and to ultimately produce a predictive model such that the evolution of a given web site can be categorized under its particular context for strategic planning. In particular, web logs contain potentially useful information and the analysis of web log data have opened new avenues to assist the web administrators and designers to establish adaptive web presence and evolution to fit user requirements.


Author(s):  
Amina Kemmar ◽  
Yahia Lebbah ◽  
Samir Loudni

Mining web access patterns consists in extracting knowledge from server log files. This problem is represented as a sequential pattern mining problem (SPM) which allows to extract patterns which are sequences of accesses that occur frequently in the web log file. There are in the literature many efficient algorithms to solve SMP (e.g., GSP, SPADE, PrefixSpan, WAP-tree, LAPIN, PLWAP). Despite the effectiveness of these methods, they do not allow to express and to handle new constraints defined on patterns, new implementations are required. Recently, many approaches based on constraint programming (CP) was proposed to solve SPM in a declarative and generic way. Since no CP-based approach was applied for mining web access patterns, the authors introduce in this paper an efficient CP-based approach for solving the web log mining problem. They bring back the problem of web log mining to SPM within a CP environment which enables to handle various constraints. Experimental results on non-trivial web log mining problems show the effectiveness of the authors' CP-based mining approach.


Author(s):  
Serra Çelik

This chapter focuses on predicting web user behaviors. When web users enter a website, every move they make on that website is stored as web log files. Unlike the focus group or questionnaire, the log files reflect real user behavior. It can easily be said that having actual user behavior is a gold value for the organizations. In this chapter, the ways of extracting user patterns (user behavior) from the log files are sought. In this context, the web usage mining process is explained. Some web usage mining techniques are mentioned.


Sign in / Sign up

Export Citation Format

Share Document