scholarly journals MICROWAVE SPECTRUM AND IODINE NUCLEAR QUADRUPOLE COUPLING CONSTANTS OF 1,1-DIIODOETHANE

2021 ◽  
Author(s):  
Michael Carrillo ◽  
Yasuki Endo ◽  
Wei Lin
1987 ◽  
Vol 42 (2) ◽  
pp. 197-206 ◽  
Author(s):  
M. Meyer ◽  
U. Andresen ◽  
H. Dreizler

The microwave spectrum of 2-chloropyridine, 2-Cl(C5H4N), has been studied to determine the 35Cl, 37Cl and 14N nuclear quadrupole coupling constants. The results are discussed within a simple MO theory. We propose an approximate r0-structure under certain assumptions. In addition to the ground state we observed one vibrationally excited state of both chlorine isotopic species of 2-chloropyridine.


1989 ◽  
Vol 44 (7) ◽  
pp. 669-674 ◽  
Author(s):  
N. Heineking ◽  
M.C.L. Gerry

Abstract The 14N nuclear quadrupole hyperfine structure in the rotational spectra of three isotopic species of methyl azide, CH3 14N3, CH3 15N14N2, and CH3 14N2 15N, has been resolved using microwave Fourier transform spectroscopy. The quadrupole coupling constants of 14N at all three positions have been evaluated and are compared with those from an ab initio calculation in the literature.Since the spectra of the substituted species have been obtained for the first time, they have provided new structural information: the rotational constants are consistent with a structure in which the NNN chain is slightly bent.


Sign in / Sign up

Export Citation Format

Share Document