scholarly journals On $k$-Fibonacci balancing and $k$-Fibonacci Lucas-balancing numbers

2021 ◽  
Vol 13 (1) ◽  
pp. 259-271
Author(s):  
S.E. Rihane

The balancing number $n$ and the balancer $r$ are solution of the Diophantine equation $$1+2+\cdots+(n-1) = (n+1)+(n+2)+\cdots+(n+r). $$ It is well known that if $n$ is balancing number, then $8n^2 + 1$ is a perfect square and its positive square root is called a Lucas-balancing number. For an integer $k\geq 2$, let $(F_n^{(k)})_n$ be the $k$-generalized Fibonacci sequence which starts with $0,\ldots,0,1,1$ ($k$ terms) and each term afterwards is the sum of the $k$ preceding terms. The purpose of this paper is to show that 1, 6930 are the only balancing numbers and 1, 3 are the only Lucas-balancing numbers which are a term of $k$-generalized Fibonacci sequence. This generalizes the result from [Fibonacci Quart. 2004, 42 (4), 330-340].

Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 700 ◽  
Author(s):  
Pavel Trojovský

The k-generalized Fibonacci sequence ( F n ( k ) ) n (sometimes also called k-bonacci or k-step Fibonacci sequence), with k ≥ 2 , is defined by the values 0 , 0 , … , 0 , 1 of starting k its terms and such way that each term afterwards is the sum of the k preceding terms. This paper is devoted to the proof of the fact that the Diophantine equation F m ( k ) = m t , with t > 1 and m > k + 1 , has only solutions F 12 ( 2 ) = 12 2 and F 9 ( 3 ) = 9 2 .


2020 ◽  
Vol 26 (11-12) ◽  
pp. 1564-1578
Author(s):  
Jonathan García ◽  
Carlos A. Gómez ◽  
Florian Luca

Author(s):  
Rannyelly Rodrigues de Oliveira ◽  
Francisco Régis Vieira Alves ◽  
Rodrigo Sychocki da Silva

Resumo: O presente artigo apresenta uma abordagem de investigação no contexto da História da Matemática, envolvendo situações que visam oportunizar o entendimento da extensão, evolução e generalização de propriedades da Sequência de Fibonacci. Dessa forma, abordam-se duas situações. A primeira, envolvendo a descrição da fórmula de Binnet no campo dos inteiros. Logo em seguida, apresenta-se uma descrição e análise dos termos explícitos presentes na Sequência Polinomial de Fibonacci. O escopo da presente proposta de atividade busca a divulgação científica de noções envolvendo a generalização, ainda atual, fato que acentua o caráter ubíquo da Sequência de Fibonacci. À vista disso, a proposta de experimento didático está fundamentada na organização das características da Engenharia Didática. Almeja-se, além da validação interna das hipóteses levantadas durante a investigação, contribuir com a formação inicial de estudantes dos cursos de Licenciatura em Matemática que virem a estudar o tema.Palavras-chave: Atividades de investigação. Engenharia Didática. História da Matemática. Sequência Generalizada de Fibonacci.  THE STUDY OF MATHEMATICAL DEFINITIONS IN THE CONTEXT OF HISTORICAL RESEARCH: A DIDACTIC EXPERIMENT INVOLVING DIDACTIC ENGINEERING AND FIBONACCI POLYNOMIAL SEQUENCESAbstract: This article presents a research approach within the context of History of Mathematics, involving situations that aim to provide an understanding of the extension, evolution and generalization of properties of the Fibonacci Sequence. In this way, two situations are addressed. The first, involving the description of Binet's formula in the integer field. Then, a description and analysis of the explicit terms present in the Fibonacci Polynomial Sequence is presented. The scope of this activity proposal seeks the scientific dissemination of notions involving generalization, still current, a fact that accentuates the ubiquitous character of the Fibonacci Sequence. Thus the proposal of didactic experiment is based on the organized in the characteristics of Didactic Engineering, beyond the internal validation of the hypotheses raised during the investigation this paper aims at contributing to initial education of undergrad   Mathematicsof students that may come to study the subject.Keywords: Research activities. Didactic Engineering. History of Mathematics. Generalized Fibonacci Sequence.


In this article, we explore the representation of the product of k consecutive Fibonacci numbers as the sum of kth power of Fibonacci numbers. We also present a formula for finding the coefficients of the Fibonacci numbers appearing in this representation. Finally, we extend the idea to the case of generalized Fibonacci sequence and also, we produce another formula for finding the coefficients of Fibonacci numbers appearing in the representation of three consecutive Fibonacci numbers as a particular case. Also, we point out some amazing applications of Fibonacci numbers.


2020 ◽  
Vol 87 (1-2) ◽  
pp. 131
Author(s):  
S. G. Rayaguru ◽  
G. K. Panda ◽  
R. K. Davala

For each positive integer <em>k</em>, the Diophantine equation (k+1)+(k+2)+···+(n−1) = (n+1)+(n+2)+···+(n+r) is studied.


2013 ◽  
Vol 1 (6) ◽  
pp. 194
Author(s):  
Bijendra Singh ◽  
Shikha Bhatnagar ◽  
Omprakash Sikhwal

Sign in / Sign up

Export Citation Format

Share Document