FLOW CONTROL ACTIVE AND REACTIVE POWER IN ELECTRIC NETWORKS

2016 ◽  
Vol 2016 (5) ◽  
pp. 61-63
Author(s):  
F.P. Govorov ◽  
◽  
V.F. Govorov ◽  
2015 ◽  
Vol 9 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Yang Liu-Lin ◽  
Hang Nai-Shan

This paper researched steady power flow control with variable inequality constraints. Since the inverse function of power flow equation is hard to obtain, differentiation coherence algorithm was proposed for variable inequality which is tightly constrained. By this method, tightly constrained variable inequality for variables adjustment relationships was analyzed. The variable constrained sensitivity which reflects variable coherence was obtained to archive accurate extreme equation for function optimization. The hybrid power flow mode of node power with branch power was structured. It also structured the minimum variable model correction equation with convergence and robot being same as conventional power flow. In fundamental analysis, the effect of extreme point was verified by small deviation from constrained extreme equation, and the constrained sensitivity was made for active and reactive power. It pointed out possible deviation by using simplified non-constrained sensitivity to deal with the optimization problem of active and reactive power. The control solutions for power flow for optimal control have been discussed as well. The examples of power flow control and voltage management have shown that the algorithm is simple and concentrated and shows the effect of differential coherence method for extreme point analysis.


2014 ◽  
Vol 19 (4) ◽  
pp. 397-405
Author(s):  
Leonardo Poltronieri Sampaio ◽  
Moacyr Aureliano Gomes de Brito ◽  
Guilherme de Azevedo e Melo ◽  
Carlos Alberto Canesin

2020 ◽  
Vol 9 (5) ◽  
pp. 1755-1765
Author(s):  
Mohammed Y. Suliman ◽  
Mahmood T. Al-Khayyat

The power flow controlled in the electric power network is one of the main factors that affected the modern power systems development. The unified power flow controller (UPFC) is a FACTS powerful device that can control both active and reactive power flow of parallel transmission lines branches. In this paper, modelling and simulation of active and reactive power flow control in parallel transmission lines using UPFC with adaptive neuro-fuzzy logic is proposed. The mathematical model of UPFC in power flow is also proposed. The results show the ability of UPFC to control the flow of powers components "active and reactive power" in the controlled line and thus the overall power regulated between lines.


Sign in / Sign up

Export Citation Format

Share Document