phase inverter
Recently Published Documents


TOTAL DOCUMENTS

1533
(FIVE YEARS 402)

H-INDEX

42
(FIVE YEARS 7)

Author(s):  
Abderrahmane Ouchatti ◽  
Redouane Majdoul ◽  
Ahmed Moutabir ◽  
Abderrahim Taouni ◽  
Abdelouahed Touati

In this article, a three-phase multilevel neutral-point-clamped inverter with a modified t-type structure of switches is proposed. A pulse width modulation (PWM) scheme of the proposed inverter is also developed. The proposed topology of the multilevel inverter has the advantage of being simple, on the one hand since it does contain only semiconductors in reduced number (corresponding to the number of required voltage levels), and no other components such as switching or flying capacitors, and on the other hand, the control scheme is much simpler and more suitable for variable frequency and voltage control. The performances of this inverter are analyzed through simulations carried out in the MATLAB/Simulink environment on a three-phase inverter with 9 levels. In all simulations, the proposed topology is connected with R-load or RL-load without any output filter.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Intissar Moussa ◽  
Adel Khedher

An appropriate modulation scheme selection ensures inverter performance. Thus, space vector modulation (SVM) is more efficient and has its own distinct advantages compared to other pulse width modulation (PWM) techniques. This work deals with the development of an advanced space vector pulse width modulation (SVM) technique for two-phase inverter control using an XSG library to ensure rapid prototyping of the controller FPGA implementation. The proposed architecture is applied digitally and in real time to drive a two-phase induction motor (TPIM) for small-scale wind turbine emulation (WTE) profiles in laboratories with minimum current ripple and torque oscillation. Four space voltage vectors generated for the used SVM technique do not contain a zero vector. Hence, for an adequate adjustment of these four vectors, a reference voltage vector located in the square locus is determined. Considering the asymmetry between the main and auxiliary windings, the TPIM behavior, which is fed through the advanced SVM controlled-two-phase inverter (2ϕ-inverter), is studied, allowing us to control the speed and the torque under different conditions for wind turbine emulation. Several quantities, such as electromagnetic torque, rotor fluxes, stator currents and speed, are analyzed. To validate the obtained results using both Simulink and XSG interfaces, the static and dynamic characteristics of the WTE are satisfactorily reproduced. The collected speed and torque errors between the reference and actual waveforms show low rates, proving emulator controller effectiveness.


2021 ◽  
Vol 14 (3) ◽  
pp. 1-11
Author(s):  
Grzegorz Szerszeń ◽  
Damian Zygadło

The paper presents the construction of a three-phase frequency converter with the possibility of choosing the type of PWM modulation and a smooth change of the frequency of the modulated signal. In a practical way, various inverter control algorithms were implemented in the same hardware system using the STM ARM Cortex M3 processor. The use of THIPWM modulation allowed to reduce the harmonic content in the output signal and effectively use the possibilities of the power source. The system can choose one of two scalar control algorithms, with the option of compensation for the influence of the stator resistance on the motor shaft torque in the initial range of the linear control characteristic at a constant voltage to frequency ratio. The research confirmed that the most advantageous type of PWM in this system is unipolar double-edge modulation. The use of the THIPWM method resulted in a gain in the amplitude of the fundamental harmonic of the output voltage for the three-phase inverter operation mode compared to the SPWM method. The appropriate precision of the frequency control step was also obtained, and the test results confirmed the functionality of the converter.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Jae-Yeob Hwang ◽  
Ji-Hwan Park ◽  
Ji-Ho Choi ◽  
Jun-Ik Uhm ◽  
Geun-Ho Lee ◽  
...  

In this study, a low-voltage three-phase inverter was used alongside a shunt resistor to measure the current. However, it is known that this type of inverter and shunt resistor system has a region where the measurement of current is impossible due to structural limitations. As a result, many studies have focused on this region through the use of additional algorithms. Most studies measured current by forcibly adjusting the PWM duty in order to measure the current at the region where it could not be sensed. However, unfortunately, the total harmonic distortion (THD) increases in the current due to PWM adjustment. This causes an increase in torque ripple and inverter control instability. Therefore, in this paper, current was measured using the Rds(on) value between the drain source resistor when MOSFET was turned on and the Kalman filter in a low-voltage three-phase inverter with a single shunt. Additionally, the value was verified via comparison with the values achieved when a Hall-type current sensor and single shunt were used. As a result, this study confirmed that the inverter with a single shunt performs the same as a Hall-type sensor at the region where current cannot be detected.


Sign in / Sign up

Export Citation Format

Share Document