Damping of Frequency Fluctuations of Hybrid Power System by Variable Deloaded Operation of PMSG Based Offshore Wind Farm

2019 ◽  
Vol 139 (4) ◽  
pp. 259-268
Author(s):  
Effat Jahan ◽  
Md. Rifat Hazari ◽  
Mohammad Abdul Mannan ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
...  
2019 ◽  
Vol 2019 (18) ◽  
pp. 4950-4954 ◽  
Author(s):  
Effat Jahan ◽  
Md. Rifat Hazari ◽  
S. M. Muyeen ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
...  

2020 ◽  
Vol 19 (1) ◽  
pp. 41-46
Author(s):  
Anannya Mondal ◽  
Md. Rifat Hazari ◽  
Mohammad Abdul Mannan ◽  
Junji Tamura

Fixed speed wind turbine-squirrel cage induction generator (FSWT-SCIG) based wind farm (WF) is increasing significantly. However, FSWT-SCIG have no frequency control capability, which creates a significant problem on power system steady-state stability. This paper represents a new operational strategy to control frequency of the entire power system including large-scale FSWT-SCIG based WF by using battery storage system (BSS). The proposed cascaded control of BSS is designed to provide effective amount of real power during steady-state period to damp frequency fluctuations. To evaluate the validity of the proposed system, simulation studies are executed on a reformed IEEE nine-bus power system with three synchronous generators (SGs) and SCIG-based WF along with BSS. The simulation results indicate that the proposed system can be an effective solution to reduce frequency fluctuations of the hybrid power system during steady-state condition.


Author(s):  
Junrong Xia ◽  
Pan Zhao ◽  
Yiping Dai

Due to the intermittence and fluctuation of wind resource, the integration of large wind farms in a power grid introduces an additional stochastic component to power system scheduling. This always brings challenges to maintain the stability of power system. Integrating gas turbine units with wind farms can compensate their output fluctuation. In this paper, a methodology for the operation scheduling of a hybrid power system that consists of a large wind farm and gas turbine units is presented. A statistical model based on numerical weather prediction is used to forecast power output of the wind farm for the next 24 hours at quarter-hour intervals. Forecasts of wind power are used for optimizing the operation scheduling. In order to study the dynamic performance of the proposed hybrid power system, dynamic modeling of this hybrid power system is addressed. Wind farm and gas turbine units are integrated through an AC bus, and then connected to a power grid. An aggregated model of the wind farm and detailed models of gas turbine units are developed, and are implemented using MATLAB/Simulink. Simulation studies are carried out to evaluate the system performance using real weather data. The simulation results show that the proposed hybrid power system can compensate fluctuating wind power effectively and make wind power more reliable.


Sign in / Sign up

Export Citation Format

Share Document