Operation and Simulation of Hybrid Wind and Gas Turbine Power System Employing Wind Power Forecasting

Author(s):  
Junrong Xia ◽  
Pan Zhao ◽  
Yiping Dai

Due to the intermittence and fluctuation of wind resource, the integration of large wind farms in a power grid introduces an additional stochastic component to power system scheduling. This always brings challenges to maintain the stability of power system. Integrating gas turbine units with wind farms can compensate their output fluctuation. In this paper, a methodology for the operation scheduling of a hybrid power system that consists of a large wind farm and gas turbine units is presented. A statistical model based on numerical weather prediction is used to forecast power output of the wind farm for the next 24 hours at quarter-hour intervals. Forecasts of wind power are used for optimizing the operation scheduling. In order to study the dynamic performance of the proposed hybrid power system, dynamic modeling of this hybrid power system is addressed. Wind farm and gas turbine units are integrated through an AC bus, and then connected to a power grid. An aggregated model of the wind farm and detailed models of gas turbine units are developed, and are implemented using MATLAB/Simulink. Simulation studies are carried out to evaluate the system performance using real weather data. The simulation results show that the proposed hybrid power system can compensate fluctuating wind power effectively and make wind power more reliable.

Author(s):  
Junrong Xia ◽  
Pan Zhao ◽  
Yiping Dai

Due to the intermittence and fluctuation of wind resource, the integration of large wind farms in a power grid always brings challenges to maintain the stability of a power system. Integrating gas turbine units with wind farms can compensate for their output fluctuation. A methodology for the operation scheduling of a hybrid power system that consists of a large wind farm and gas turbine units is presented. A statistical model based on numerical weather prediction is used to forecast power output of the wind farm. Forecasts of wind power are used for optimizing the operation scheduling. Dynamic modeling of this hybrid power system is addressed. Simulation studies are carried out to evaluate the system performance using real weather data. The simulation results show that the proposed hybrid power system can compensate fluctuating wind power effectively and make wind power more reliable.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiao-ling Su ◽  
Lai-jun Chen ◽  
Jun Yang ◽  
Zhengxi Li ◽  
Peng Zhou ◽  
...  

Power systems have developed significantly because of the increasing share of renewable energy sources (RESs). Despite the advantages, they also bring inevitable challenges to power system stability, especially under extreme fault conditions. This paper presents a practical active support control strategy for RESs to support the power grid under extreme fault conditions. The proof process is taken in an AC-DC hybrid power grid integrated with large capacity of PV stations and wind farms. The on-site engineering test results reflect that RESs bring potential risks in the AC-DC hybrid power grid operation and validate the excellent engineering practical features of the proposed control strategy. In addition, test results also reveal predisposing factors of power system instability which are missing in the simulation and fault simulation device-based testing results. They prove the outstanding advantages of on-site engineering tests.


2019 ◽  
Vol 139 (4) ◽  
pp. 259-268
Author(s):  
Effat Jahan ◽  
Md. Rifat Hazari ◽  
Mohammad Abdul Mannan ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 846-849
Author(s):  
Jian Yuan Xu ◽  
Wei Fu Qi ◽  
Yun Teng

This paper mainly studies wind power fluctuations how to affect voltage stability after the wind power grid integration, and reactive power compensation equipment on improving effect. In certain parts of the wind farm, for example, firstly, analyzing the wind farm reactive power problems. Then introduce the reactive power compensation equipment that used in the wind farm. Finally, with PSCAD software, making a simulation analysis about the influence on the power grid voltage according to adopting the different reactive power compensation devices or not.


2010 ◽  
Vol 34 (8) ◽  
pp. 1040-1049
Author(s):  
Sae-Gin Oh ◽  
Tae-Woo Lim ◽  
Jong-Su Kim ◽  
Byung-Lea Kil ◽  
Sang-Kyun Park ◽  
...  

2013 ◽  
Vol 38 (11) ◽  
pp. 4748-4759 ◽  
Author(s):  
Dang Saebea ◽  
Yaneeporn Patcharavorachot ◽  
Suttichai Assabumrungrat ◽  
Amornchai Arpornwichanop

Sign in / Sign up

Export Citation Format

Share Document