Analysis of Single Server Batch Service Queueing System Under Multiples Vacations with Bernoulli Schedule

1996 ◽  
Vol 2 (2) ◽  
pp. 95-106 ◽  
Author(s):  
Jewgeni H. Dshalalow ◽  
Jay Yellen

The authors study a single-server queueing system with bulk arrivals and batch service in accordance to the general quorum discipline: a batch taken for service is not less thanrand not greater thanR(≥r). The server takes vacations each time the queue level falls belowr(≥1)in accordance with the multiple vacation discipline. The input to the system is assumed to be a compound Poisson process. The analysis of the system is based on the theory of first excess processes developed by the first author. A preliminary analysis of such processes enabled the authors to obtain all major characteristics for the queueing process in an analytically tractable form. Some examples and applications are given.


2014 ◽  
Vol 31 (02) ◽  
pp. 1440002 ◽  
Author(s):  
K. AVRACHENKOV ◽  
E. MOROZOV ◽  
R. NEKRASOVA ◽  
B. STEYAERT

In this paper, we study a new retrial queueing system with N classes of customers, where a class-i blocked customer joins orbit i. Orbit i works like a single-server queueing system with (exponential) constant retrial time (with rate [Formula: see text]) regardless of the orbit size. Such a system is motivated by multiple telecommunication applications, for instance wireless multi-access systems, and transmission control protocols. First, we present a review of some corresponding recent results related to a single-orbit retrial system. Then, using a regenerative approach, we deduce a set of necessary stability conditions for such a system. We will show that these conditions have a very clear probabilistic interpretation. We also performed a number of simulations to show that the obtained conditions delimit the stability domain with a remarkable accuracy, being in fact the (necessary and sufficient) stability criteria, at the very least for the 2-orbit M/M/1/1-type and M/Pareto/1/1-type retrial systems that we focus on.


1987 ◽  
Vol 24 (03) ◽  
pp. 758-767
Author(s):  
D. Fakinos

This paper studies theGI/G/1 queueing system assuming that customers have service times depending on the queue size and also that they are served in accordance with the preemptive-resume last-come–first-served queue discipline. Expressions are given for the limiting distribution of the queue size and the remaining durations of the corresponding services, when the system is considered at arrival epochs, at departure epochs and continuously in time. Also these results are applied to some particular cases of the above queueing system.


1962 ◽  
Vol 2 (4) ◽  
pp. 499-507 ◽  
Author(s):  
G. F. Yeo

SummaryThis paper considers a generalisation of the queueing system M/G/I, where customers arriving at empty and non-empty queues have different service time distributions. The characteristic function (c.f.) of the stationary waiting time distribution and the probability generating function (p.g.f.) of the queue size are obtained. The busy period distribution is found; the results are generalised to an Erlangian inter-arrival distribution; the time-dependent problem is considered, and finally a special case of server absenteeism is discussed.


Sign in / Sign up

Export Citation Format

Share Document