Synthesis of platinum/multi-wall carbon nanotube catalysts

2004 ◽  
Vol 19 (8) ◽  
pp. 2279-2284 ◽  
Author(s):  
Pan Mu ◽  
Tang Haolin ◽  
Mu Shichun ◽  
Yuan Runzhang

The purpose of this research is to investigate the feasibility of the synthesis of platinum/multi-wall carbon nanotube (Pt/MWNT) catalysts and such catalysts' application in fuel cells. The as-received MWNTs were purified and decorated by pretreatment. Infrared-spectrum indicates the carboxylic (-COOH) and carbonyl (-C=O) groups were introduced on the surface of the MWNTs after pretreatment. These functional groups will act as anchor sites for the Pt deposition. Then the Pt particles in nano scale were deposited on the surface of MWNTs by reduction of a solution of hexachloroplatinic acid. Transmission electron microscopy examination reveals that Pt particles are attached to the surface of MWNTs. If as-received MWNTs are not pretreated in the proper way, the Pt particle aggregates are mostly found on the open end of MWNTs. Occasionally Pt penetrated inside the tube of MWNTs. The relationship between the Pt particle morphology and the conditions of pretreatment and reduction reaction is discussed. After heat treatment, Pt particles recrystallized to form the Pt/MWNT catalysts. The Pt/MWNT catalysts were applied to a single cell and the test result shows a promising future of these catalysts with low Pt loading when applied in proton exchange membrane fuel cells (PEMFCs).

RSC Advances ◽  
2017 ◽  
Vol 7 (34) ◽  
pp. 20801-20810 ◽  
Author(s):  
Duanghathai Kaewsai ◽  
Pornpote Piumsomboon ◽  
Kejvalee Pruksathorn ◽  
Mali Hunsom

A series of the polyaniline (PAN)-wrapped carbon nanotube (CNT)-supported PtCo (PtCo/xPAN–CNT) catalysts was prepared for the oxygen reduction reaction (ORR) in a proton exchange membrane (PEM) fuel cell.


2021 ◽  
Author(s):  
Xieweiyi Ye ◽  
Yakun Xue ◽  
Kaijia Li ◽  
Wen Tang ◽  
Xiao Han ◽  
...  

Improving the activity and durability of Pt-based electrocatalysts used in the acidic oxygen reduction reaction (ORR) is a great task for the commercial applications of proton-exchange membrane fuel cells. Alloying...


2021 ◽  
Author(s):  
Hong Zhu ◽  
Qingjun Chen ◽  
Jinghua Yu ◽  
Qian Zhou ◽  
Fanghui Wang ◽  
...  

The corrosion of carbon support is one of key factors causing deactivation of Pt-based oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells. In this work, a highly...


Nanoscale ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 2542-2554 ◽  
Author(s):  
Mohanraju Karuppannan ◽  
Ji Eun Park ◽  
Hyo Eun Bae ◽  
Yong-Hun Cho ◽  
Oh Joong Kwon

Nitrogen-doped carbon-encapsulated non-noble metals are promising electrocatalytic alternatives to Pt for the oxygen reduction reaction (ORR).


2021 ◽  
Author(s):  
Minhua Shao ◽  
Fei Xiao ◽  
Qi Wang ◽  
Gui-Liang Xu ◽  
Xueping Qin ◽  
...  

Abstract Proton exchange membrane fuel cell converts hydrogen and oxygen into electricity with zero emission1. The high cost and low durability of Pt-based electrocatalysts for oxygen reduction reaction hinder its wide applications2,3. The development of non-precious metal electrocatalysts also reaches the bottleneck because of the low activity and durability4,5. Here we rationally design a hybrid electrocatalyst consisting of atomically dispersed Pt and Fe single atoms and intermetallic PtFe alloy nanoparticles. The Pt mass activity of the hybrid catalyst is 3.5 times higher than that of commercial Pt/C in a fuel cell. More importantly, the fuel cell with an ultra-low Pt loading in the cathode (0.015 mgPt cm-2) shows unprecedented durability, with 93.6% activity retention after 100,000 cycles and no noticeable current drop at 0.6 V for at least 206 h. These results highlight the importance of the synergistic effects among active sites in hybrid electrocatalysts and provide an alternative way to design more active and durable low-Pt electrocatalysts for electrochemical devices.


Sign in / Sign up

Export Citation Format

Share Document