iron oxide
Recently Published Documents


TOTAL DOCUMENTS

17002
(FIVE YEARS 6180)

H-INDEX

209
(FIVE YEARS 58)

2024 ◽  
Vol 84 ◽  
Author(s):  
N. N. H. Shosha ◽  
S. Elmasry ◽  
M. Moawad ◽  
S. H. Ismail ◽  
M. Elsayed

Abstract Nanoparticles are considered viable options in the treatment of cancer. This study was conducted to investigate the effect of magnetite nanoparticles (MNPs) and magnetite folate core shell (MFCS) on leukemic and hepatocarcinoma cell cultures as well as their effect on the animal model of acute myelocytic leukemia (AML). Through current study nanoparticles were synthesized, characterized by various techniques, and their properties were studied to confirm their nanostructure. Invivo study, nanoparticles were evaluated to inspect their cytotoxic activity against SNU-182 (human hepatocellular carcinoma), K562 (human leukemia), and THLE2 (human normal epithelial liver) cells via MTT test. Apoptotic signaling proteins Bcl-2 and Caspase-3 expression were inspected through RT-PCR method. A cytotoxic effect of MNPs and MFCS was detected in previous cell cultures. Moreover, the apoptosis was identified through significant up-regulation of caspase-3, with Bcl-2 down-regulation. Invitro study, AML was induced in rats by N-methyl-N-nitrosourea followed by oral treatment with MNPS and MFCS. Biochemical indices such as aspartate and alanine amino transferases, and lactate dehydrogenase activities, uric acid, complete blood count, and Beta -2-microglubulin were assessed in serum. Immunophenotyping for CD34 and CD38 detection was performed. Liver, kidney, and bone marrow were microscopically examined. Bcl-2 promoter methylation, and mRNA levels were examined. Although, both MNPs and MFCS depict amelioration in biochemical parameters, MFCS alleviated them toward normal control. Anticancer activity of MNPs and MFCS was approved especially for AML. Whenever, administration of MFCS was more effective than MNPs. The present work is one of few studies used MFCS as anticancer agent.


2022 ◽  
Vol 117 (2) ◽  
pp. 485-494
Author(s):  
Tobias U. Schlegel ◽  
Renee Birchall ◽  
Tina D. Shelton ◽  
James R. Austin

Abstract Iron oxide copper-gold (IOCG) deposits form in spatial and genetic relation to hydrothermal iron oxide-alkali-calcic-hydrolytic alteration and thus show a mappable zonation of mineral assemblages toward the orebody. The mineral zonation of a breccia matrix-hosted orebody is efficiently mapped by regularly spaced samples analyzed by the scanning electron microscopy-integrated mineral analyzer technique. The method results in quantitative estimates of the mineralogy and allows the reliable recognition of characteristic alteration as well as mineralization-related mineral assemblages from detailed mineral maps. The Ernest Henry deposit is located in the Cloncurry district of Queensland and is one of Australia’s significant IOCG deposits. It is known for its association of K-feldspar altered clasts with iron oxides and chalcopyrite in the breccia matrix. Our mineral mapping approach shows that the hydrothermal alteration resulted in a characteristic zonation of minerals radiating outward from the pipe-shaped orebody. The mineral zonation is the result of a sequence of sodic alteration followed by potassic alteration, brecciation, and, finally, by hydrolytic (acid) alteration. The hydrolytic alteration primarily affected the breccia matrix and was related to economic mineralization. Alteration halos of individual minerals such as pyrite and apatite extend dozens to hundreds of meters beyond the limits of the orebody into the host rocks. Likewise, the Fe-Mg ratio in hydrothermal chlorites changes systematically with respect to their distance from the orebody. Geochemical data obtained from portable X-ray fluorescence (p-XRF) and petrophysical data acquired from a magnetic susceptibility meter and a gamma-ray spectrometer support the mineralogical data and help to accurately identify mineral halos in rocks surrounding the ore zone. Specifically, the combination of mineralogical data with multielement data such as P, Mn, As, P, and U obtained from p-XRF and positive U anomalies from radiometric measurements has potential to direct an exploration program toward higher Cu-Au grades.


2022 ◽  
Vol 226 ◽  
pp. 107038
Author(s):  
Mohammad Assefi ◽  
Sajjad S. Mofarah ◽  
Samane Maroufi ◽  
Rasoul Khayyam Nekouei ◽  
Wei Wang ◽  
...  

2022 ◽  
Vol 607 ◽  
pp. 34-44
Author(s):  
Francesca Serio ◽  
Niccolò Silvestri ◽  
Sahitya Kumar Avugadda ◽  
Giulia E.P. Nucci ◽  
Simone Nitti ◽  
...  
Keyword(s):  

2022 ◽  
Vol 429 ◽  
pp. 132220
Author(s):  
Junying Song ◽  
Zuo Tong How ◽  
Zhanbin Huang ◽  
Mohamed Gamal El-Din

Sign in / Sign up

Export Citation Format

Share Document