Assessment of transmission losses and groundwater recharge from runoff events in watercourses of the Neqarot watershed, Israel

2001 ◽  
Vol 50 (2-4) ◽  
pp. 201-216 ◽  
Author(s):  
Isabela Shentsis ◽  
Arie Ben-Zvi ◽  
Lev Meirovich ◽  
Eliyahu Rosenthal
2001 ◽  
Vol 50 (2-4) ◽  
pp. 187-200 ◽  
Author(s):  
Arie Ben-Zvi ◽  
Isabela Shentsis ◽  
Eliyahu Rosenthal ◽  
Lev Meirovich

2001 ◽  
Vol 50 (2) ◽  
pp. 201-216
Author(s):  
Isabela Shentsis ◽  
Lev Meirovich ◽  
Arie Ben-Zvi ◽  
Eliyahu Rosenthal

2001 ◽  
Vol 50 (2) ◽  
pp. 187-200 ◽  
Author(s):  
Isabela Shentsis ◽  
Lev Meirovich ◽  
Arie Ben-Zvi ◽  
Eliyahu Rosenthal

2021 ◽  
Vol 14 (11) ◽  
pp. 6893-6917
Author(s):  
E. Andrés Quichimbo ◽  
Michael Bliss Singer ◽  
Katerina Michaelides ◽  
Daniel E. J. Hobley ◽  
Rafael Rosolem ◽  
...  

Abstract. Dryland regions are characterised by water scarcity and are facing major challenges under climate change. One difficulty is anticipating how rainfall will be partitioned into evaporative losses, groundwater, soil moisture, and runoff (the water balance) in the future, which has important implications for water resources and dryland ecosystems. However, in order to effectively estimate the water balance, hydrological models in drylands need to capture the key processes at the appropriate spatio-temporal scales. These include spatially restricted and temporally brief rainfall, high evaporation rates, transmission losses, and focused groundwater recharge. Lack of available input and evaluation data and the high computational costs of explicit representation of ephemeral surface–groundwater interactions restrict the usefulness of most hydrological models in these environments. Therefore, here we have developed a parsimonious distributed hydrological model for DRYland Partitioning (DRYP). The DRYP model incorporates the key processes of water partitioning in dryland regions with limited data requirements, and we tested it in the data-rich Walnut Gulch Experimental Watershed against measurements of streamflow, soil moisture, and evapotranspiration. Overall, DRYP showed skill in quantifying the main components of the dryland water balance including monthly observations of streamflow (Nash–Sutcliffe efficiency, NSE, ∼ 0.7), evapotranspiration (NSE > 0.6), and soil moisture (NSE ∼ 0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment and that < 1 % leaves the catchment as streamflow. Greater than 90 % of the overland flow generated in the catchment is lost through ephemeral channels as transmission losses. However, only ∼ 35 % of the total transmission losses percolate to the groundwater aquifer as focused groundwater recharge, whereas the rest is lost to the atmosphere as riparian evapotranspiration. Overall, DRYP is a modular, versatile, and parsimonious Python-based model which can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.


2021 ◽  
Author(s):  
Edisson Andres Quichimbo ◽  
Michael Bliss Singer ◽  
Katerina Michaelides ◽  
Daniel E. J. Hobley ◽  
Rafael Rosolem ◽  
...  

Abstract. Dryland regions are characterized by water scarcity and are facing major challenges under climate change. One difficulty is anticipating how rainfall will be partitioned into evaporative losses, groundwater, soil moisture and runoff (the water balance) in the future, which has important implications for water resources and dryland ecosystems. However, in order to effectively estimate the water balance, hydrological models in drylands need to capture the key processes at the appropriate spatiotemporal scales including spatially restricted and temporally brief rainfall, high evaporation rates, transmission losses and focused groundwater recharge. Lack of available data and the high computational costs of explicit representation of ephemeral surface-groundwater interactions restrict the usefulness of most hydrological models in these environments. Therefore, here we have developed a parsimonious hydrological model (DRYP) that incorporates the key processes of water partitioning in dryland regions, and we tested it in the data-rich Walnut Gulch Experimental Watershed against measurements of streamflow, soil moisture and evapotranspiration. Overall, DRYP showed skill in quantifying the main components of the dryland water balance including monthly observations of streamflow (Nash efficiency (NSE) ~0.7), evapotranspiration (NSE > 0.6) and soil moisture (NSE ~0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment, and that < 1 % leaves the catchment as streamflow. Greater than 90 % of the overland flow generated in the catchment is lost through ephemeral channels as transmission losses. However, only ~35 % of the total transmission losses percolate to the groundwater aquifer as focused groundwater recharge, whereas the rest is lost to the atmosphere as riparian evapotranspiration. Overall, DRYP is a modular, versatile and parsimonious Python-based model which can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions


2017 ◽  
Vol 51 (5) ◽  
pp. 439-448
Author(s):  
László Palcsu ◽  
László Kompár ◽  
József Deák ◽  
Péter Szűcs ◽  
László Papp

Sign in / Sign up

Export Citation Format

Share Document