scholarly journals Malicious Code Detection for Trusted Execution Environment Based on Paillier Homomorphic Encryption

2020 ◽  
Vol E103.B (3) ◽  
pp. 155-166
Author(s):  
Ziwang WANG ◽  
Yi ZHUANG
2022 ◽  
Vol 8 (2) ◽  
pp. 1-35
Author(s):  
Fumiyuki Kato ◽  
Yang Cao ◽  
Mastoshi Yoshikawa

Existing Bluetooth-based private contact tracing (PCT) systems can privately detect whether people have come into direct contact with patients with COVID-19. However, we find that the existing systems lack functionality and flexibility , which may hurt the success of contact tracing. Specifically, they cannot detect indirect contact (e.g., people may be exposed to COVID-19 by using a contaminated sheet at a restaurant without making direct contact with the infected individual); they also cannot flexibly change the rules of “risky contact,” such as the duration of exposure or the distance (both spatially and temporally) from a patient with COVID-19 that is considered to result in a risk of exposure, which may vary with the environmental situation. In this article, we propose an efficient and secure contact tracing system that enables us to trace both direct contact and indirect contact. To address the above problems, we need to utilize users’ trajectory data for PCT, which we call trajectory-based PCT . We formalize this problem as a spatiotemporal private set intersection that satisfies both the security and efficiency requirements. By analyzing different approaches such as homomorphic encryption, which could be extended to solve this problem, we identify the trusted execution environment (TEE) as a candidate method to achieve our requirements. The major challenge is how to design algorithms for a spatiotemporal private set intersection under the limited secure memory of the TEE. To this end, we design a TEE-based system with flexible trajectory data encoding algorithms. Our experiments on real-world data show that the proposed system can process hundreds of queries on tens of millions of records of trajectory data within a few seconds.


2017 ◽  
Vol 21 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Sandro Pinto ◽  
Tiago Gomes ◽  
Jorge Pereira ◽  
Jorge Cabral ◽  
Adriano Tavares

電腦學刊 ◽  
2021 ◽  
Vol 32 (4) ◽  
pp. 225-238
Author(s):  
Zhiyuan Zhang Zhiyuan Zhang ◽  
Zhenjiang Zhang Zhiyuan Zhang ◽  
Bo Shen Zhenjiang Zhang


Sign in / Sign up

Export Citation Format

Share Document