scholarly journals Reinsurance and Solvency Capital: Mitigating Insurance Companies’ Ruin Probability

Author(s):  
Jorge Wilson Euphasio Junior ◽  
João Vinícius França Carvalho

ABSTRACT Context: insurance companies are important to society, since they guarantee financial protection to individuals from property losses, in addition to fostering the capital market through the allocation of guarantee assets. Thus, it is essential to evaluate the instruments that guarantee their long-term financial solvency. Among them are the adoption of reinsurance treaties, the sizing of the solvency capital, and the actuarial modeling of risk processes, which allow the measurement of the ruin probability. Objective: estimate the ruin probability in risk processes with the adoption of reinsurance contracts (quota share and excess of loss), compared to scenarios without such treaties. Methods: the Cramér-Lundberg process was simulated using the Monte Carlo method, adjusting several probabilistic distributions to the severity of the compound Poisson process, which is calibrated with a set of 3,917,863 real microdata, from 30 insurance lines of business. Results: it was found that, although each branch presents particularities in the claim severity, the correct choice of reinsurance (proportional or not) implies the reduction of the ruin probability for a fixed solvency capital. Conclusion: the appropriate choice of the reinsurance contract, especially when there is evidence of high kurtosis in the claim values, intensifies the exponential decline in the relationship between the solvency capital and the ruin probability.

Author(s):  
Jorge Wilson Euphasio Junior ◽  
João Vinícius França Carvalho

ABSTRACT Context: insurance companies are important to society, since they guarantee financial protection to individuals from property losses, in addition to fostering the capital market through the allocation of guarantee assets. Thus, it is essential to evaluate the instruments that guarantee their long-term financial solvency. Among them are the adoption of reinsurance treaties, the sizing of the solvency capital, and the actuarial modeling of risk processes, which allow the measurement of the ruin probability. Objective: estimate the ruin probability in risk processes with the adoption of reinsurance contracts (quota share and excess of loss), compared to scenarios without such treaties. Methods: the Cramér-Lundberg process was simulated using the Monte Carlo method, adjusting several probabilistic distributions to the severity of the compound Poisson process, which is calibrated with a set of 3,917,863 real microdata, from 30 insurance lines of business. Results: it was found that, although each branch presents particularities in the claim severity, the correct choice of reinsurance (proportional or not) implies the reduction of the ruin probability for a fixed solvency capital. Conclusion: the appropriate choice of the reinsurance contract, especially when there is evidence of high kurtosis in the claim values, intensifies the exponential decline in the relationship between the solvency capital and the ruin probability.


2005 ◽  
Vol 35 (1) ◽  
pp. 61-77 ◽  
Author(s):  
Shuanming Li ◽  
José Garrido

We consider a risk model with two independent classes of insurance risks. We assume that the two independent claim counting processes are, respectively, Poisson and Sparre Andersen processes with generalized Erlang(2) claim inter-arrival times. The Laplace transform of the non-ruin probability is derived from a system of integro-differential equations. Explicit results can be obtained when the initial reserve is zero and the claim severity distributions of both classes belong to the Kn family of distributions. A relation between the ruin probability and the distribution of the supremum before ruin is identified. Finally, the Laplace transform of the non-ruin probability of a perturbed Sparre Andersen risk model with generalized Erlang(2) claim inter-arrival times is derived when the compound Poisson process converges weakly to a Wiener process.


2005 ◽  
Vol 35 (01) ◽  
pp. 61-77 ◽  
Author(s):  
Shuanming Li ◽  
José Garrido

We consider a risk model with two independent classes of insurance risks. We assume that the two independent claim counting processes are, respectively, Poisson and Sparre Andersen processes with generalized Erlang(2) claim inter-arrival times. The Laplace transform of the non-ruin probability is derived from a system of integro-differential equations. Explicit results can be obtained when the initial reserve is zero and the claim severity distributions of both classes belong to the Kn family of distributions. A relation between the ruin probability and the distribution of the supremum before ruin is identified. Finally, the Laplace transform of the non-ruin probability of a perturbed Sparre Andersen risk model with generalized Erlang(2) claim inter-arrival times is derived when the compound Poisson process converges weakly to a Wiener process.


2006 ◽  
Vol 43 (4) ◽  
pp. 916-926 ◽  
Author(s):  
Ayalvadi Ganesh ◽  
Giovanni Luca Torrisi

We consider a class of risk processes with delayed claims, and we provide ruin probability estimates under heavy tail conditions on the claim size distribution.


2019 ◽  
Vol 24 (1) ◽  
pp. 21 ◽  
Author(s):  
Christian Kasumo

In this paper, we work with a diffusion-perturbed risk model comprising a surplus generating process and an investment return process. The investment return process is of standard a Black–Scholes type, that is, it comprises a single risk-free asset that earns interest at a constant rate and a single risky asset whose price process is modelled by a geometric Brownian motion. Additionally, the company is allowed to purchase noncheap proportional reinsurance priced via the expected value principle. Using the Hamilton–Jacobi–Bellman (HJB) approach, we derive a second-order Volterra integrodifferential equation which we transform into a linear Volterra integral equation of the second kind. We proceed to solve this integral equation numerically using the block-by-block method for the optimal reinsurance retention level that minimizes the ultimate ruin probability. The numerical results based on light- and heavy-tailed individual claim amount distributions show that proportional reinsurance and investments play a vital role in enhancing the survival of insurance companies. But the ruin probability exhibits sensitivity to the volatility of the stock price.


2018 ◽  
Vol 13 (1) ◽  
pp. 198-213
Author(s):  
Linlin Tian ◽  
Lihua Bai

AbstractIn this paper, we model the surplus process as a compound Poisson process perturbed by diffusion and allow the insurer to ask its customers for input to minimize the distance from some prescribed target path and the total discounted cost on a fixed interval. The problem is reduced to a version of a linear quadratic regulator under jump-diffusion processes. It is treated using three methods: dynamic programming, completion of square and the stochastic maximum principle. The analytic solutions to the optimal control and the corresponding optimal value function are obtained.


Sign in / Sign up

Export Citation Format

Share Document