Agent-Based Modeling and Simulation

AI Magazine ◽  
2012 ◽  
Vol 33 (3) ◽  
pp. 29 ◽  
Author(s):  
Franziska Klügl ◽  
Ana L. C. Bazzan

This article gives an introduction to agent-based modeling and simulation (ABMS). After a general discussion about modeling and simulation, we address the basic concept of ABMS, focusing on its generative and bottom-up nature, its advantages as well as its pitfalls. The subsequent part of the article deals with application-oriented aspects, including selected tools and well-known applications. In order to illustrate the benefits of using ABMS, we focus on several aspects of a well-known area related to simulation of complex systems, namely traffic. At the end, a brief look into future challenges is given.

2021 ◽  

Agent-based modeling (ABM) has become widely accepted as a methodological tool to model and simulate dynamic processes of geographical phenomena. A growing number of ABM studies across a variety of domains and disciplines is partially explained by the development of agent-modeling tools and platforms, the availability of micro-data, and the advancement in computer technology and cyberinfrastructure. In addition to these technical reasons, another key motivation underlying ABM research is to address challenges embedded in conventional modeling approaches being relatively coarse, aggregate, static, normative, and inflexible across scales with a reductionist viewpoint (Batty 2005 cited under Application: Urban Systems.” With complexity science, including complex systems, complex adaptive systems, and artificial life, providing theoretical foundations and rationales, ABM is a computational methodology for simulating dynamic processes of nature and human systems driven by disaggregated, heterogeneous, and autonomous entities, i.e., agents, that interact among themselves and their environments. A key fundamental concept of the ABM framework is that a system emerges from the dynamic individual-level interactions from bottom-up, where the simulated outcome is more than the sum of its components. This bottom-up approach enables ABM to exhibit complex system dynamics, properties of which could include feedback effect, path-dependence, phase shift, non-linearity, adaptation, self-organization, tipping points, and emergence. Three key components of ABM are agents, their environment, and their decision rules. Agents are the crucial component in ABM where each individual agent has its own characteristics and agenda, assesses its surrounded situation, and makes decisions. Agents reside in an environment, which can represent a geographic space in case for spatially explicit agent-based models. Agents’ behavioral decisions and interactions within their environment are defined based on a set of rules, which can alter their status and location over time. The purpose of ABM research can be classified into theoretical exploration and empirical investigation as well as the combination of two. In the latter case, ABM can be used as an artificial laboratory experiment to explore what-if scenarios and to investigate how changes in agents, environments, and/or rules affect the macro-level outcomes. ABM has been applied to represent a wide variety of geographic processes and behaviors including but not limited to urban system, land-use/land-cover change, ecology, transportation, animal/human movement, behavioral geography, spatial cognition, transportation, and disease epidemiology. While the growing interest in ABM as a modeling methodology to simulate complex systems is remarkable, there exist various conceptual, methodological, and technical challenges.


2018 ◽  
Vol 7 (1) ◽  
pp. 5-24 ◽  
Author(s):  
Martina Husáková

Abstract Complex systems are characterised by a huge amount of components, which are highly linked with each other. Tourism is one of the examples of complex systems collecting various activities leading to the enrichment of travellers in the view of receiving new experiences and increasing economic prosperity of specific destinations. The complex systems can be investigated with various bottom-up and top-down approaches. The multi-agent-based modelling is the bottom-up approach that is focused on the representation of individual entities for the exploration of possible interactions among them and their effects on surrounding environments. These systems are able to integrate knowledge of socio-cultural, economic, physical, biological or environmental systems for in-silico models development, which can be used for experimentation with a system. The main aim of the presented text is to introduce links between tourism, complexity and to advocate usefulness of the multi-agent-based systems for the exploration of tourism and its sustainability. The evaluation of suitability of the multi-agent systems in tourism is based on the investigation of fundamental characteristics of these two systems and on the review of specific applications of the multi-agent systems in sustainable tourism.


Sign in / Sign up

Export Citation Format

Share Document