scholarly journals A Uniform Framework for Concept Definitions in Description Logics

1997 ◽  
Vol 6 ◽  
pp. 87-110 ◽  
Author(s):  
G. De Giacomo ◽  
M. Lenzerini

Most modern formalisms used in Databases and Artificial Intelligence for describing an application domain are based on the notions of class (or concept) and relationship among classes. One interesting feature of such formalisms is the possibility of defining a class, i.e., providing a set of properties that precisely characterize the instances of the class. Many recent articles point out that there are several ways of assigning a meaning to a class definition containing some sort of recursion. In this paper, we argue that, instead of choosing a single style of semantics, we achieve better results by adopting a formalism that allows for different semantics to coexist. We demonstrate the feasibility of our argument, by presenting a knowledge representation formalism, the description logic muALCQ, with the above characteristics. In addition to the constructs for conjunction, disjunction, negation, quantifiers, and qualified number restrictions, muALCQ includes special fixpoint constructs to express (suitably interpreted) recursive definitions. These constructs enable the usual frame-based descriptions to be combined with definitions of recursive data structures such as directed acyclic graphs, lists, streams, etc. We establish several properties of muALCQ, including the decidability and the computational complexity of reasoning, by formulating a correspondence with a particular modal logic of programs called the modal mu-calculus.

Author(s):  
David J. Lobina

Recursion, or the capacity of ‘self-reference’, has played a central role within mathematical approaches to understanding the nature of computation, from the general recursive functions of Alonzo Church to the partial recursive functions of Stephen C. Kleene and the production systems of Emil Post. Recursion has also played a significant role in the analysis and running of certain computational processes within computer science (viz., those with self-calls and deferred operations). Yet the relationship between the mathematical and computer versions of recursion is subtle and intricate. A recursively specified algorithm, for example, may well proceed iteratively if time and space constraints permit; but the nature of specific data structures—viz., recursive data structures—will also return a recursive solution as the most optimal process. In other words, the correspondence between recursive structures and recursive processes is not automatic; it needs to be demonstrated on a case-by-case basis.


1979 ◽  
Vol 22 (2) ◽  
pp. 79-96 ◽  
Author(s):  
W. E. Gull ◽  
M. A. Jenkins

Sign in / Sign up

Export Citation Format

Share Document